Merging and Sorting By Strip Moves

  • Meena Mahajan
  • Raghavan Rama
  • Venkatesh Raman
  • S. Vijayakumar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2914)


We consider two problems related to the well-studied sorting by transpositions problem: (1) Given a permutation, sort it by moving a minimum number of strips, where a strip is a maximal substring of the permutation which is also a substring of the identity permutation, and (2) Given a set of increasing sequences of distinct elements, merge them into one increasing sequence with a minimum number of strip moves. We show that the merging by strip moves problem has a polynomial time algorithm. Using this, we give a 2-approximation algorithm for the sorting by strip moves problem. We also observe that the sorting by strip moves problem, as well as the sorting by transpositions problem, are fixed-parameter-tractable.


Naive Algorithm Maximal Substring Unit Edge Sorting Sequence Extra Move 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. SIAM Journal on Computing 25, 272–289 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bafna, V., Pevzner, P.: Sorting by transpositions. SIAM Journal on Discrete Mathematics 11(2), 224–240 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Boedlander, H., Downey, R.G., Fellows, M.R., Hallett, M.T., Wareham, H.T.: Parameterized complexity analysis in computational biology. Bioinformatics 11, 49–57 (1995)CrossRefGoogle Scholar
  4. 4.
    Christie, D.A.: Sorting permutations by block-interchanges. Information Processing Letters 60, 165–169 (1996)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glasgow (1999)Google Scholar
  6. 6.
    Christie, D.A., Irving, R.: Sorting strings by reversals and by transpositions. SIAM Journal on Discrete Mathematics 14(2), 193–206 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1997)Google Scholar
  8. 8.
    Eriksen, N.: 1 + ε approximation for sorting by reversals and transpositions. Theoretical Computer Science 289, 517–529 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Erikson, H., Eriksson, K., Karlander, J., Svensson, L., Wästlund, J.: Sorting a bridge hand. Discrete Mathematics 241, 289–300 (2001)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fellows, M.R., Hallett, M.T., Wareham, H.T.: DNA physical mapping: 3 ways difficult. In: Proceedings of the European Symposium on Algorithms ESA, pp. 157–168 (1993)Google Scholar
  11. 11.
    Gu, Q.P., Peng, S., Sudborough, H.: A 2-approximation algorithm for genome rearrangements by reversals and transpositions. Theoretical Computer Science 210(2), 327–339 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hartman, T.: A simpler 1.5 approximation algorithm for sorting by transpositions. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 156–169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Heath, L.S., Vergara, J.P.C.: Sorting by short block moves. Algorithmica 28, 323–352 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kececioglu, J., Sankoff, D.: Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. Algorithmica 13, 180–210 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Pevzner, P.: Computational Molecular Biology: An Algorithmic Approach. MIT Press, Cambridge (2000)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Meena Mahajan
    • 1
  • Raghavan Rama
    • 2
  • Venkatesh Raman
    • 1
  • S. Vijayakumar
    • 2
  1. 1.The Institute of Mathematical SciencesChennaiIndia
  2. 2.Department of MathematicsIndian Institute of TechnologyMadras, ChennaiIndia

Personalised recommendations