Stretching of Jordan Arc Contact Systems

  • Hubert de Fraysseix
  • Patrice Ossona de Mendez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2912)


We prove that a contact system of Jordan arcs is stretchable if and only if it is extendable into a weak arrangement of pseudo-lines.


  1. 1.
    Colin de Verdière, E., Pocchiola, M., Vegter, G.: Tutte’s barycenter method applied to isotopies. In: Proc. 13th Canad. Conf. Comput. Geom. (2001)Google Scholar
  2. 2.
    Fáry, I.: On straight line representation of planar graphs. Acta Scientiarum Mathematicarum (Szeged) II, 229–233 (1948)Google Scholar
  3. 3.
    Linial, M., Lovász, L., Wigdersib, A.: Rubber bands, convex embeddings and graph connectivity. Combinatorica 8(1), 91–102 (1988)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Orden, D.: Two problems in geometric combinatorics: Efficient triangulations of the hypercube;plane graphs and rigidity., Ph.D. thesis, University of Santander, Spain (2003)Google Scholar
  5. 5.
    Shor, P.W.: Stretchability of pseudolines is NP-hard. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 531–554 (1991)Google Scholar
  6. 6.
    Stein, S.K.: Convex maps. Proc. Amer. Math. Soc. 2, 464–466 (1951)Google Scholar
  7. 7.
    Steinitz, E., Rademacher, H.: Vorlesung über die Theorie der Polyeder. Springer, Berlin (1934)Google Scholar
  8. 8.
    Thomassen, C.: Planarity and duality of finite and infinite planar graphs. J. Combinatorial Theory, Series B 29, 244–271 (1980)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Tutte, W.T.: Convex representations of graphs. In: Proc. London Math. Society, vol. 10, pp. 304–320 (1960)Google Scholar
  10. 10.
    Tutte, W.T.: How to draw a graph. In: Proc. London Math. Society, vol. 13, pp. 743–768 (1963)Google Scholar
  11. 11.
    Wagner, K.: Über eine Eigenschaft der Ebenen Komplexe. Math. Ann. 114, 570–590 (1937)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hubert de Fraysseix
    • 1
  • Patrice Ossona de Mendez
    • 1
  1. 1.UMR 8557, CNRSParisFrance

Personalised recommendations