GD 2003: Graph Drawing pp 59-70

# Two Results on Intersection Graphs of Polygons

• Jan Kratochvíl
• Martin Pergel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2912)

## Abstract

Intersection graphs of convex polygons inscribed to a circle, so called polygon-circle graphs, generalize several well studied classes of graphs, e.g., interval graphs, circle graphs, circular-arc graphs and chordal graphs. We consider the question how complicated need to be the polygons in a polygon-circle representation of a graph.

Let cmp (n) denote the minimum k such that every polygon-circle graph on n vertices is the intersection graph of k-gons inscribed to the circle. We prove that cmp(n) = n − log 2 n + o(log 2 n) by showing that for every positive constant c < 1,cmp(n) ≤ n − clogn for every sufficiently large n, and by providing an explicit construction of polygon-circle graphs on n vertices which are not representable by polygons with less than n − logn − 2 loglogn corners. We also show that recognizing intersection graphs of k-gons inscribed in a circle is an NP-complete problem for every fixed k ≥ 3.

### References

1. 1.
Bouchet, A.: Circle graph obstructions. J. Comb. Theory, Ser. B 60(1), 107–144 (1994)
2. 2.
Eschen, E.M., Spinrad, J.P.: An O(n 2) algorithm for circular-arc graph recognition. In: Proceedings 4th ACM-SIAM Symposium on Discrete Algorithms, pp. 128–137 (1993)Google Scholar
3. 3.
de Frayssiex, H.: A characterization of circle graphs. Eur. J. Comb. 5, 223–238 (1984)Google Scholar
4. 4.
Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Can. J. Math. 16, 539–548 (1964)
5. 5.
Gyarfás, A.: Problems from the world surrounding perfect graphs. Zastosow. Mat. 19(3/4), 413–441 (1987)
6. 6.
Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10, 713–717 (1981)
7. 7.
Koebe, M.: On a New Class of Intersection Graphs. In: Proceedings of the Fourth Czechoslovak Symposium on Combinatorics Prachatice, pp. 141–143 (1990)Google Scholar
8. 8.
Kratochvíl, J.: String graphs II. Recognizing string graphs is NP-hard. J. Combin. Theory Ser. B 52, 67–78 (1991)
9. 9.
Kratochvíl, J., Kostochka, A.: Covering and coloring polygon-circle graphs. Discrete Math. 163, 299–305 (1997)
10. 10.
Kratochvíl, J., Lubiw, A., Nešetřil, J.: Noncrossing subgraphs of topological layouts. SIAM J. Discrete Math. 4, 223–244 (1991)
11. 11.
Kratochvíl, J., Matoušek, J.: String graphs requiring exponential representations. J. Combin. Theory Ser. B 53, 1–4 (1991)
12. 12.
Pach, J., Tóth, G.: Recognizing string graphs is decidable. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 247–260. Springer, Heidelberg (2002)
13. 13.
Spinrad, J.P.: Recognition of Circle Graphs. Journal of Algorithms 16(1), 264–282 (1994)
14. 14.
15. 15.
Schaefer, M., Stefankovič, D.: Decidability of string graphs. In: STOC 2001, Proceedings 33rd Annual ACM Symposium on Theory of Computing, Greece, pp. 241–246 (2001)Google Scholar
16. 16.
Schaefer, M., Sedgwick, E., Stefankovič, D.: Recognizing string graphs in NP. In: STOC 2002, Proceedings 34th Annual ACM Symposium on Theory of Computing (2002)Google Scholar
17. 17.
Tucker, A.C.: An efficient test for circular-arc graphs. SIAM J. Comput. 9, 1–24 (1980)