Visual Data Mining with ILOG Discovery

  • Thomas Baudel
  • Bruno Haible
  • Georg Sander
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2912)

Abstract

Data mining deals with the discovery of useful and previously unknown knowledge from large data sets [3]. Traditional data mining tools use a combination of machine learning, statistical analysis, modeling techniques and database technology to find patterns, exceptions and subtle relationships in data. Typical applications include market segmentation, customer profiling, fraud detection, credit risk analysis, and business data development.

References

  1. 1.
    Eades, P., Lin, T., Lin, X.: Two tree drawing conventions. Int. Journal of Computational Geometry and Applications 3(2), 133–153 (1993)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fekete, J.-D., Plaisant, C.: Interactive information visualization of a million items. In: Proc. IEEE Symp. InfoVis 2002, pp. 117–124. IEEE Press, Los Alamitos (2002)CrossRefGoogle Scholar
  3. 3.
    Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)Google Scholar
  4. 4.
    Rao, R., Card, S.K.: The table lens: Merging graphical and symbolic representations in an interactive focus+context visualization for tabular information. In: Proc. ACM SIGCHI 1994, pp. 318–322. ACM Press, New York (1994)Google Scholar
  5. 5.
    Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Transactions on Graphics 11(1), 92–99 (1992)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Thomas Baudel
    • 1
  • Bruno Haible
    • 1
  • Georg Sander
    • 1
  1. 1.ILOG SAGentilly CedexFRANCE

Personalised recommendations