Radial Level Planarity Testing and Embedding in Linear Time

  • Christian Bachmaier
  • Franz J. Brandenburg
  • Michael Forster
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2912)


Every planar graph has a concentric representation based on a breadth first search, see [21]. The vertices are placed on concentric circles and the edges are routed as curves without crossings. Here we take the opposite view. A graph with a given partitioning of its vertices onto k concentric circles is k-radial planar, if the edges can be routed monotonic between the circles without crossings. Radial planarity is a generalisation of level planarity, where the vertices are placed on k horizontal lines. We extend the technique for level planarity testing of [18,17,15,16,12,13] and show that radial planarity is decidable in linear time, and that a radial planar embedding can be computed in linear time.


  1. 1.
    Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and embedding in linear time. Technical Report MIP-0303, University of Passau (June 2003)Google Scholar
  2. 2.
    Bachmaier, C., Raitner, M.: Improved symmetric lists (May 2003) (submitted for publication)Google Scholar
  3. 3.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and System Sciences 13, 335–379 (1976)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding planar graphs using PQ-trees. Journal of Computer and System Sciences 30, 54–76 (1985)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  7. 7.
    Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Transactions on Systems, Man, and Cybernetics 18(6), 1035–1046 (1988)MATHCrossRefGoogle Scholar
  8. 8.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM Journal on Computing 25(5), 956–997 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dujmović, V., Fellows, M., Hallett, M., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., Whitesides, S., Wood, D.R.: On the parameterized complexity of layered graph drawing. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 488–499. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Even, S.: Algorithms. ch. 7, pp. 148–191. Computer Science Press, Rockville (1979)MATHGoogle Scholar
  11. 11.
    GTL. Graph Template Library. University of Passau, http://www.infosun.fmi.uni-passau.de/GTL/
  12. 12.
    Heath, L.S., Pemmaraju, S.V.: Recognizing leveled-planar dags in linear time. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 300–311. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs: Part II. SIAM Journal on Computing 28(5), 1588–1626 (1999)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM Journal on Computing 21(5), 927–958 (1992)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jünger, M., Leipert, S.: Level planar embedding in linear time. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 72–81. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Jünger, M., Leipert, S.: Level planar embedding in linear time. Journal of Graph Algorithms and Applications 6(1), 67–113 (2002)MATHMathSciNetGoogle Scholar
  17. 17.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 224–237. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Leipert, S.: Level Planarity Testing and Embedding in Linear Time. Dissertation, Mathematisch-Naturwissenschaftliche Fakultät der Universität zu Köln (1998)Google Scholar
  19. 19.
    Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: Rosenstiehl, P. (ed.) Theory of Graphs, International Symposium, Rome, July 1966, pp. 215–232. Gordon and Breach, New York (1967)Google Scholar
  20. 20.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics 11(2), 109–125 (1981)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Ullman, J.D.: Computational Aspects of VLSI. ch. 3.5, pp. 111–114. Computer Science Press, Rockville (1984)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Christian Bachmaier
    • 1
  • Franz J. Brandenburg
    • 1
  • Michael Forster
    • 1
  1. 1.University of PassauPassauGermany

Personalised recommendations