Advertisement

Experiments with the Fixed-Parameter Approach for Two-Layer Planarization

  • Matthew Suderman
  • Sue Whitesides
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2912)

Abstract

We present computational results of an implementation based on the fixed parameter tractability (FPT) approach for biplanarizing graphs. These results show that the implementation can efficiently minimum biplanarizing sets containing up to about 18 edges, thus making it comparable to previous integer linear programming approaches. We show how our implementation slightly improves the theoretical running time to O(6bpr(G) + |G |). Finally, we explain how our experimental work predicts how performance on sparse graphs may be improved.

References

  1. 1.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Englewood Cliffs (1999)MATHGoogle Scholar
  2. 2.
    Downey, R.G., Fellows, M.R.: Parametrized Complexity. Springer, Heidelberg (1999)Google Scholar
  3. 3.
    Dujmović, V., Fellows, M.R., Hallett, M.T., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F.A., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter approach to two-layer planarization. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 1–15. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Dujmović, V., Fellows, M.R., Hallett, M.T., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F.A., Suderman, M., Whitesides, S., Wood, D.R.: A fixed-parameter approach to two-layer planarization (2003) (manuscript)Google Scholar
  5. 5.
    Eades, P., McKay, B., Wormald, N.: On an edge crossing problem. In: Proceedings of the 9th Australian Computer Science Conference, pp. 327–334. Australian National University (1986)Google Scholar
  6. 6.
    Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM Journal of Algebraic Discrete Methods 4, 312–316 (1983)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Harary, F., Schwenk, A.: A new crossing number for bipartite graphs. Utilitas Mathematica 1, 203–209 (1972)MATHMathSciNetGoogle Scholar
  8. 8.
    Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: performance of exact and heuristic algorithms. Journal of Graph Algorithms and Applications 1, 1–25 (1997)MathSciNetGoogle Scholar
  9. 9.
    Jünger, M., Thienel, S.: The ABACUS-system for branch and cut and price algorithms in integer programming and combinatorial optimization. In: Software–Practice and Experience, vol. 30, pp. 1324–1352 (2000)Google Scholar
  10. 10.
    Knuth, D.: The Stanford GraphBase: A Platform for Combinatorial Computing. ACM Press/Addison-Wesley Publishing Company (1993)Google Scholar
  11. 11.
    Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chichester (1990)MATHGoogle Scholar
  12. 12.
    Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 318–333. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs. SIAM Journal of Optimization 11, 1065–1080 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Transactions on Systems, Man, and Cybernetics 11, 109–125 (1981)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Tomii, N., Kambayashi, Y., Yajima, S.: On planarization algorithms of 2-level graphs. Papers of tech. group on elect. comp., IECEJ EC77-38, 1–12 (1977)Google Scholar
  16. 16.
    Warfield, J.N.: Crossing theory and hierarchy mapping. IEEE Transactions on Systems, Man, and Cybernetics 7, 502–523 (1977)MathSciNetGoogle Scholar
  17. 17.
    Waterman, M.S., Griggs, J.R.: Interval graphs and maps of DNA. Bulletin of Mathematical Biology 48, 189–195 (1986)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Matthew Suderman
    • 1
  • Sue Whitesides
    • 1
  1. 1.School of Computer ScienceMcGill UniversityMontreal, QuebecCANADA

Personalised recommendations