Planar Embeddings of Graphs with Specified Edge Lengths

  • Sergio Cabello
  • Erik D. Demaine
  • Günter Rote
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2912)


We consider the problem of finding a planar embedding of a (planar) graph with a prescribed Euclidean length on every edge. There has been substantial previous work on the problem without the planarity restrictions, which has close connections to rigidity theory, and where it is easy to see that the problem is NP-hard. In contrast, we show that the problem is tractable—indeed, solvable in linear time on a real RAM—for planar embeddings of planar 3-connected triangulations, even if the outer face is not a triangle. This result is essentially tight: the problem becomes NP-hard if we consider instead planar embeddings of planar 3-connected infinitesimally rigid graphs, a natural relaxation of triangulations in this context.


  1. 1.
    Berger, B., Kleinberg, J., Leighton, T.: Reconstructing a three-dimensional model with arbitrary errors. In: Proc. 28th Annu. ACM Sympos. Theory Comput., May 1996, pp. 449–458 (1996)Google Scholar
  2. 2.
    Burnikel, C., Fleischer, R., Mehlhorn, K., Schirra, S.: A strong and easily computable separation bound for arithmetic expressions involving radicals. Algorithmica 27(1), 87–99 (2000)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Burnikel, C., Funke, S., Mehlhorn, K., Schirra, S., Schmitt, S.: A separation bound for real algebraic expressions. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 254–265. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Campbell, J.: Map Use and Analysis, 4th edn. McGraw-Hill, Boston (2001)MATHGoogle Scholar
  5. 5.
    Čapkun, S., Hamdi, M., Hubaux, J.: GPS-free positioning in mobile ad-hoc networks. In: Proceedings of the 34th Hawaii International Conference on System Sciences, January 2001, pp. 3481–3490 (2001)Google Scholar
  6. 6.
    Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(5), 485–524 (1991)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Connelly, R.: On generic global rigidity. In: Gritzman, P., Sturmfels, B. (eds.) Applied Geometry and Discrete Mathematics: The Victor Klee Festschrift. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 147–155. AMS Press (1991)Google Scholar
  8. 8.
    Coullard, C., Lubiw, A.: Distance visibility graphs. Internat. J. Comput. Geom. Appl. 2(4), 349–362 (1992)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. John Wiley & Sons, Chichester (1988)MATHGoogle Scholar
  10. 10.
    Devillers, O., Liotta, G., Preparata, F.P., Tamassia, R.: Checking the convexity of polytopes and the planarity of subdivisions. Comput. Geom. Theory Appl. 11, 187–208 (1998)MATHMathSciNetGoogle Scholar
  11. 11.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)MATHGoogle Scholar
  12. 12.
    Diestel, R.: Graph Theory, 2nd edn. Springer, New York (2000)Google Scholar
  13. 13.
    Eades, P., Wormald, N.: Fixed edge length graph drawing is NP-hard. Discrete Appl. Math. 28, 111–134 (1990)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Everett, H., Hoàng, C.T., Kilakos, K., Noy, M.: Distance segment visibility graphs (1999) (manuscript),
  15. 15.
    Graver, J., Servatius, B., Servatius, H.: Combinatorial Rigidity. American Mathematical Society, Providence (1993)MATHGoogle Scholar
  16. 16.
    Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hendrickson, B.: The molecule problem: Exploiting structure in global optimization. SIAM J. on Optimization 5, 835–857 (1995)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs (March 2003) (manuscript)Google Scholar
  19. 19.
    Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. on Discrete Mathematics 5(3), 422–427 (1992)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Li, C., Yap, C.: A new constructive root bound for algebraic expressions. In: Proc. 12th Annu. ACM–SIAM Sympos. Discrete Algorithms, pp. 496–505 (2001)Google Scholar
  21. 21.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Pach, J., Agarwal, P.: Combinatorial Geometry. John Wiley & Sons, New York (1995)MATHGoogle Scholar
  23. 23.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction, 3rd edn. Springer, Heidelberg (October 1990)Google Scholar
  24. 24.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket locationsupport system. In: Proceedings of 6th Annual International Conference on Mobile Computing and Networking, Boston, MA, August 2000, pp. 32–43 (2000)Google Scholar
  25. 25.
    Savarese, C., Rabaey, J., Beutel, J.: Locationing in distributed ad-hoc wireless sensor networks. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, May 2001, pp. 2037–2040 (2001)Google Scholar
  26. 26.
    Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proc. 17th Allerton Conf. Commun. Control Comput., pp. 480–489 (1979)Google Scholar
  27. 27.
    Yemini, Y.: Some theoretical aspects of position-location problems. In: Proc. 20th Annu. IEEE Sympos. Found. Comput. Sci., pp. 1–8 (1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sergio Cabello
    • 1
  • Erik D. Demaine
    • 2
  • Günter Rote
    • 3
  1. 1.Institute of Information and Computing SciencesUniversiteit UtrechtUtrechtThe Netherlands
  2. 2.MIT Laboratory for Computer Science200 Technology SquareCambridgeUSA
  3. 3.Institut für InformatikFreie Universität BerlinBerlinGermany

Personalised recommendations