More Efficient Generation of Plane Triangulations

  • Shin-ichi Nakano
  • Takeaki Uno
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2912)


In this paper we give an algorithm to generate all biconnected plane triangulations having exactly n vertices including exactly r vertices on the outer face. The algorithm uses O(n) space in total and generates such triangulations without duplications in O(rn) time per triangulation, while the previous best algorithm generates such triangulations in O(r2n) time per triangulation.


  1. [A96]
    Avis, D.: Generating rooted triangulations without repetitions. Algorithmica 16, 618–632 (1996)MATHMathSciNetGoogle Scholar
  2. [B80]
    Beyer, T., Hedetniemi, S.M.: Constant time generation of rooted trees. SIAM J. Comput. 9, 706–712 (1980)MATHCrossRefMathSciNetGoogle Scholar
  3. [CN98]
    Chrobak, M., Nakano, S.: Minimum-width grid drawings of plane graphs. Computational Geometry: Theory and Applications 10, 29–54 (1998)MathSciNetGoogle Scholar
  4. [FPP90]
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)MATHCrossRefMathSciNetGoogle Scholar
  5. [G93]
    Goldberg, L.A.: Efficient algorithms for listing combinatorial structures. Cambridge University Press, New York (1993)MATHCrossRefGoogle Scholar
  6. [HW74]
    Hopcroft, J.E., Wong, J.K.: Linear time algorithm for isomorphism of planar graphs. In: Proc. of 6th STOC, pp. 172–184 (1974)Google Scholar
  7. [KS98]
    Kreher, D.L., Stinson, D.R.: Combinatorial algorithms. CRC Press, Boca Raton (1998)Google Scholar
  8. [LN01]
    Li, Z., Nakano, S.: Efficient generation of plane triangulations without repetitions. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 433–443. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. [M98]
    McKay, B.D.: Isomorph-free exhaustive generation. J. of Algorithms 26, 306–324 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. [S90]
    Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st Annual ACMSIAM Symp. on Discrete Algorithms, San Francisco, pp. 138–148 (1990)Google Scholar
  11. [W86]
    Wright, R.A., Richmond, B., Odlyzko, A., McKay, B.D.: Constant time generation of free trees. SIAM J. Comput. 15, 540–548 (1986)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Shin-ichi Nakano
    • 1
  • Takeaki Uno
    • 2
  1. 1.Gunma UniversityKiryuJapan
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations