Graph Embedding with Minimum Depth and Maximum External Face

  • Carsten Gutwenger
  • Petra Mutzel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2912)

Abstract

We present new linear time algorithms using the SPQR-tree data structure for computing planar embeddings of planar graphs optimizing certain distance measures. Experience with orthogonal drawings generated by the topology-shape-metrics approach shows that planar embeddings following these distance measures lead to improved quality of the final drawing in terms of bends, edge length, and drawing area.

Given a planar graph, the algorithms compute the planar embedding with

  1. 1

    the minimum depth among the set of all planar embeddings of G,

     
  2. 2

    the external face of maximum size among the set of all planar embeddings of G,

     
  3. 3

    the external face of maximum size among the set of all embeddings of G with minimum depth.

     

References

  1. 1.
    Batini, C., Nardelli, E., Tamassia, R.: A layout algorithm for data-flow diagrams. IEEE Trans. Soft. Eng. SE-12(4), 538–546 (1986)Google Scholar
  2. 2.
    Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship diagrams. The Journal of Systems and Software 4, 163–173 (1984)CrossRefMATHGoogle Scholar
  3. 3.
    Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entityrelationship diagrams. Journal of Systems and Software 4, 163–173 (1984)CrossRefGoogle Scholar
  4. 4.
    Bienstock, D., Monma, C.L.: On the computational complexity of embedding planar graphs to minimize certain distance measures. Algorithmica 5(1), 93–109 (1990)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chiba, N., Nishizeki, T., Abe, S., Ozawa, T.: A linear algorithm for embedding planar graphs using PQ-trees. J. Computer and System Sciences 30, 54–76 (1985)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  7. 7.
    Di Battista, G., Tamassia, R.: On-line maintanance of triconnected components with SPQR-trees. Algorithmica 15, 302–318 (1996)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Didimo, W., Liotta, G.: Computing orthogonal drawings in a variable embedding setting. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 79–88. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Computing 31(2), 601–625 (2002)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Graph drawing toolkit: An object-oriented library for handling and drawing graphs, http://www.dia.uniroma3.it/gdt
  12. 12.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Liotta, G., Vargiu, F., Di Battista, G.: Orthogonal drawings with the minimum number of bends. In: Proceedings of the 6th Canadian Conference on Computational Geometry, pp. 281–286. University of Saskatchewan (1994)Google Scholar
  14. 14.
    Mehlhorn, K., Mutzel, P.: On the embedding phase of the Hopcoft and Tarjan planarity testing algorithm. Algorithmica 16(2), 233–242 (1996)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mutzel, P., Weiskircher, R.: Bend minimization in orthogonal drawings using integer programming. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 484–493. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Pizzonia, M., Tamassia, R.: Minimum depth graph embedding. In: Paterson, M. (ed.) ESA 2000. LNCS, vol. 1879, pp. 356–367. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern. SMC-18(1), 61–79 (1988)CrossRefGoogle Scholar
  19. 19.
    Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Weiskircher, R.: New Applications of SPQR-Trees in Graph Drawing. PhD thesis, Universität des Saarlandes (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Carsten Gutwenger
    • 1
  • Petra Mutzel
    • 2
  1. 1.Stiftung caesarBonnGermany
  2. 2.Vienna University of TechnologyViennaAustria

Personalised recommendations