3D Visibility Representations of Complete Graphs

  • Jan Štola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2912)

Abstract

This paper continues the study of 3D visibility representations of complete graphs where vertices are represented by equal convex polygons lying in planes parallel to the xy-plane. Edges correspond to the z-parallel visibility among these polygons.

We give several bounds on the size of the largest complete graph that has a 3D visibility representation with particular properties. Namely we improve the best known lower bound for representations by regular n-gons from \(\lfloor \frac{n+1}{2}\rfloor+2\) to n+1 and the upper bound from \(2^{2^{n}}\) to \(\left({6n-3 \atop 3n-1}\right)-3\).

References

  1. 1.
    Alt, H., Godau, M., Whitesides, S.: Universal 3-dimensional visibility representations for graphs. Comput. Geom. 9, 111–125 (1998)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Babilon, R., Nyklová, H., Pangrác, O., Vondrák, J.: Visibility representations of complete graphs. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 333–341. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Tóth, G., Valtr, P.: Note on the Erdős-Szekeres theorem. Discrete Comput. Geom. 19(3), 457–459 (1998)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cobos, F.J., Dana, J.C., Hurtado, F., Márquez, A., Mateos, F.: On a visibility representation of graphs. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 152–161. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  5. 5.
    Bose, P., Dean, A., Hutchinson, J., Shermer, T.: On rectangle visibility graphs. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 25–44. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  6. 6.
    Fekete, S.P., Houle, M.E., Whitesides, S.: New results on a visibility representation of graphs in 3D. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 234–241. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Hutchinson, J.P., Shermer, T., Vince, A.: On representations of some thickness-two graphs. Comput. Geom. 13(3), 161–171 (1999)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete and Computational Geometry 1, 321–341 (1986)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bose, P., Everett, H., Fekete, S., Lubiw, A., Meijer, H., Romanik, K., Shermer, T., Whitesides, S.: On a visibility representation for graphs in three dimensions. In: Proc. Graph Drawing 1993, pp. 38–39 (1993)Google Scholar
  10. 10.
    Dean, A., Hutchinson, J.: Rectangle-visibility representations of bipartite graphs. Discrete Appl. Math. 75(1), 9–25 (1997)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jan Štola
    • 1
  1. 1.Department of Applied MathematicsCharles UniversityPragueCzech Republic

Personalised recommendations