Laying Out Iterated Line Digraphs Using Queues

  • Toru Hasunuma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2912)

Abstract

In this paper, we study a layout problem of a digraph using queues. The queuenumber of a digraph is the minimum number of queues required for a queue layout of the digraph. We present upper and lower bounds on the queuenumber of an iterated line digraph Lk(G) of a digraph G. In particular, our upper bound depends only on G and is independent of the number of iterations k. Queue layouts can be applied to three-dimensional drawings. From the result on the queuenumber of Lk(G), it is shown that for any fixed digraph G, Lk(G) has a three-dimensional drawing with O(n) volume, where n is the number of vertices in Lk(G). We also apply these results to particular families of iterated line digraphs such as de Bruijn digraphs, Kautz digraphs, butterfly digraphs, and wrapped butterfly digraphs.

References

  1. 1.
    Alon, N., McDiarmid, C., Reed, B.: Acyclic coloring of graphs. Random Structures & Algorithms 2, 277–288 (1991)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bermond, J.-C., Darrot, E., Delmas, O., Perennes, S.: Hamiltonian circuits in the directed wrapped butterfly network. Discrete Applied Math. 84, 21–42 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bermond, J.-C., Peyrat, C.: De Bruijn and Kautz networks: A competition for the hypercube? In: André, F., Verjus, J.P. (eds.) Hypercube and distributed computers, pp. 279–293. North Holland, Amsterdam (1989)Google Scholar
  4. 4.
    Bernhart, F., Kainen, P.C.: The book thickness of a graph. J. Combin. Theory Ser. B 27, 320–331 (1979)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books: a layout problem with application to VLSI design. SIAM J. Algebraic Discrete Methods 8, 33–58 (1987)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dujmović, V., Wood, D.R.: Tree-Partitions of k-trees with applications in graph layouts. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 205–217. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Dujmović, V., Wood, D.R.: New results in graph layout, Tech. Report TR-2003-04, School of Computer Science, Carleton University, Canada (2002)Google Scholar
  8. 8.
    Dujmović, V., Morin, P., Wood, D.R.: Path-width and three-dimensional straight-line grid drawings of graphs. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 42–53. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Even, S., Itai, A.: Queues, stacks and graphs. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 71–86. Academic Press, New York (1971)Google Scholar
  10. 10.
    Fertin, G., Raspaud, A., Reed, B.: On star coloring of graphs. In: Brandstädt, A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 140–153. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Fiol, M.A., Yebra, J.L.A., Alegre, I.: Line digraph iterations and the (d,k) digraph problem. IEEE Trans. Comput. 33, 400–403 (1984)MATHCrossRefGoogle Scholar
  12. 12.
    Games, R.A.: Optimal book embeddings of the FFT, Benes, and barrel shifter networks. Algorithmica 1, 233–250 (1986)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ganley, J.L., Heath, L.S.: The pagenumber of k-trees is O(k). Discrete Applied Math. 109, 215–221 (2001)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hasunuma, T.: Embedding iterated line digraphs in books. Networks 40, 51–62 (2002)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Hasunuma, T.: Queuenumbers and stacknumbers of generalized de Bruijn and Kautz digraphs (submitted)Google Scholar
  16. 16.
    Hasunuma, T., Shibata, Y.: Embedding de Bruijn, Kautz and shuffle-exchange networks in books. Discrete Applied Math. 78, 103–116 (1997)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hasunuma, T., Shibata, Y.: Containment of butterflies in networks constructed by the line digraph operation. Inform. Process. Lett. 61, 25–30 (1997)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Discrete Math. 5 (1992)Google Scholar
  19. 19.
    Heath, L.S., Pemmaraju, S.V., Trenk, A.N.: Stack and queue layouts of directed acyclic graphs I. SIAM J. Comput. 28, 1510–1539 (1999)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Heath, L.S., Pemmaraju, S.V.: Stack and queue layouts of directed acyclic graphs II. SIAM J. Comput. 28, 1588–1626 (1999)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21, 927–958 (1992)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Konoe, M., Hagiwara, K., Tokura, N.: On the pagenumber of hypercubes and cube-connected cycles. IEICE Trans. J71-D, 490–500 (1988) (in Japanese)Google Scholar
  23. 23.
    Malitz, S.M.: Genus g graphs have pagenumber O(\(\sqrt{g}\)). J. Algorithms 17, 85–109 (1994)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Muder, D.J., Weaver, M.L., West, D.B.: Pagenumber of complete bipartite graphs. J. Graph Theory 12, 469–489 (1988)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Pemmaraju, S.V.: Exploring the powers of stacks and queues via graph layouts, Ph.D thesis, Virginia Polytechnic Institute and State University, Virginia, USA (1992)Google Scholar
  26. 26.
    Rengarajan, S., Veni Madhavan, C.E.: Stack and queue number of 2-trees. In: Li, M., Du, D.-Z. (eds.) COCOON 1995. LNCS, vol. 959, pp. 203–212. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  27. 27.
    Rosenberg, A.L.: The Diogenes approach to testable fault-tolerant arrays of processors. IEEE Trans. Comput. C-32, 902–910 (1983)CrossRefGoogle Scholar
  28. 28.
    Swaminathan, R.P., Giriaj, D., Bhatia, D.K.: The pagenumber of the class of bandwidth-k graphs is k – 1. Inform. Process. Lett. 55, 71–74 (1995)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Tarjan, R.E.: Sorting using networks of queues and stacks. J. Assoc. Comput. Mach. 19, 341–346 (1972)MATHMathSciNetGoogle Scholar
  30. 30.
    Wood, D.R.: Bounded degree book embeddings and three-dimensional orthogonal graph drawing. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 312–327. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Wood, D.R.: Queue layouts, tree-width, and three-dimensional graph drawing. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 348–359. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  32. 32.
    Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. System Sci. 38, 36–67 (1989)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Toru Hasunuma
    • 1
  1. 1.Department of Computer ScienceThe University of Electro-CommunicationsTokyoJapan

Personalised recommendations