Fixed-Location Circular-Arc Drawing of Planar Graphs

  • Alon Efrat
  • Cesim Erten
  • Stephen G. Kobourov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2912)

Abstract

In this paper we consider the problem of drawing a planar graph using circular-arcs as edges, given a one-to-one mapping between the vertices of the graph and a set of n points on the plane, where n is the number of vertices in the graph. If for every edge we have only two possible circular arcs, then a simple reduction to 2SAT yields an O(n 2) algorithm to find out if a drawing with no crossings can be realized. We present an improved O(n 7/4 polylog n) time algorithm. For the special case where the possible circular arcs for each edge are of the same length, we present an even more efficient algorithm that runs in O(n 3/2 polylog n) time. We also consider the problem if we have more than two possible circular arcs per edge and show that the problem becomes NP-Hard. Moreover, we show that two optimization versions of the problem are also NP-Hard.

References

  1. 1.
    Agarwal, P.: Range searching. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, CRC Press, Boca Raton (1997)Google Scholar
  2. 2.
    Agarwal, P., Erickson, J.: Geometric range searching and its relatives. Advances in Discrete and Computational Geometry 23, 1–56 (1999)MathSciNetGoogle Scholar
  3. 3.
    Agarwal, P., van Kreveld, M., Suri, S.: Label placement by maximum independent set in rectangles. Computational Geometry: Theory and Applications 11, 209–218 (1998)MATHMathSciNetGoogle Scholar
  4. 4.
    Apswall, B., Plass, M., Tarjan, R.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Proc. Letters 8, 121–123 (1979)CrossRefGoogle Scholar
  5. 5.
    Cheng, C.C., Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Drawing planar graphs with circular arcs. Discrete and Computational Geometry 25, 405–418 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Doddi, S., Marathe, M., Mirzaian, A., Moret, B., Zhu, B.: Map labeling and its generalizations. In: 8th Symposium on Discrete Algorithms, pp. 148–157 (1997)Google Scholar
  7. 7.
    Doddi, S., Marathe, M., Moret, B.: Point set labeling with specified positions. In: Proc. 16th ACM Sympos. Comput. Geom. (SoCG 2000), pp. 182–190 (2000)Google Scholar
  8. 8.
    Efrat, A., Erten, C., Kobourov, S.G.: Fixed-location circular-arc drawing of planar graphs. Technical Report TR03-10, Department of Computer Science, University of Arizona (2003)Google Scholar
  9. 9.
    Efrat, A., Itai, A., Katz, M.J.: Geometry helps in bottleneck matching and related problems. Algorithmica 31, 1–28 (2001)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM J. Comput. 5, 691–703 (1976)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Formann, M., Wagner, F.: A packing problem with applications to lettering of maps. In: Proc. 7th Annu. ACM Sympos. Comput. Geom., pp. 281–288 (1991)Google Scholar
  12. 12.
    Godau, M.: On the difficulty of embedding planar graphs with inaccuracies. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 254–261. Springer, Heidelberg (1995)Google Scholar
  13. 13.
    Gupta, P., Janardan, R., Smid, M.: Algorithms for some intersection searching problems involving circular objects. Intl. J. of Math. Algorithms 1, 35–52 (1999)MATHGoogle Scholar
  14. 14.
    Imai, H., Asano, T.: Efficient algorithms for geometric graph search problems. SIAM J. Comput. 15, 478–494 (1986)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)MATHMathSciNetGoogle Scholar
  16. 16.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11, 329–343 (1982)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Matoušek, J.: Efficient partition trees. Discrete Comput. Geom. 8, 315–334 (1992)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Matoušek, J.: Geometric range searching. ACM Computing Surveys 26, 421–462 (1994)Google Scholar
  19. 19.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 263–274. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Poon, C., Zhu, B., Chin, F.: A polynomial time solution for labeling a rectilinear map. Information Processing Letters 65(4), 201–207 (1998)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Strijk, T., van Kreveld, M.: Labeling a rectilinear map more efficiently. Information Processing Letters 69(1), 25–30 (1999)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Tamassia, R., Tollis, I.G.: Planar grid embedding in linear time. IEEE Trans. Circuits Syst. CAS-36(9), 1230–1234 (1989)CrossRefMathSciNetGoogle Scholar
  23. 23.
    van Kreveld, M., Strijk, T., Wolff, A.: Point set labeling with sliding labels. In: Proc. 14th Annu. ACM Sympos. Comput. Geom. (SoCG 1998), pp. 337–346 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alon Efrat
    • 1
  • Cesim Erten
    • 1
  • Stephen G. Kobourov
    • 1
  1. 1.Department of Computer ScienceUniversity of Arizona 

Personalised recommendations