Personalization in Digital Libraries – An Extended View

  • Erich Neuhold
  • Claudia Niederée
  • Avaré Stewart
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2911)


Although digital libraries are tailored to the information needs of a specific community, they are large and broad enough in scope to create individual information overload. Digital library personalization reduces the gap between the content offered by the library and individual information needs. Based on an extended view on personalization in digital libraries, this paper discusses various personalization methods for digital libraries. The advantages and challenges of founding personalization on a better understanding of the library user is illustrated by three advanced personalization approaches: Personal Reference Libraries, Collaborative Content Annotation, and modeling and exploitation of Personal Web Context. Each of these approaches focuses on another individual aspect in the interaction between the library and its user. In addition, we also take a closer look at the limitations and challenges of personalization in digital library.


Recommender System Digital Library Information Object Collaborative Filter Information Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, M., Burstein, M.: Implementing a Model of Human Plausible Reasoning. In: The Proceedings of the Tenth Annual IJCAI, Milan, Italy, pp. 185–188 (August 1987)Google Scholar
  2. 2.
    Barrett, R., Maglio, P.P., Kellem, D.C.: How to Personalize the Web. In: Pemberton, S. (ed.) Proceedings of the Conference on Human Factors in Computing Systems (CHI 1997), Atlanta, Georgia, USA, March 22-27, ACM Press, New York (1997)Google Scholar
  3. 3.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (May 2001)Google Scholar
  4. 4.
    Bouthors, V., Dedieu, O.: Pharos, a Collaborative Infrastructure for Web Knowledge Sharing. In: Abiteboul, S., Vercoustre, A.-M. (eds.) ECDL 1999. LNCS, vol. 1696, p. 215. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Brocks, H., Dirsch Weigand, A., Keiper, J., Stein, A., Theil, U.: COLLATE - Historische Filmforschung in einem verteilten Annotationssystem im WWW. In: Schmidt, R. (ed.) Information Research & Content Management - Orientierung, Ordnung und Organisation im Wissensmarkt, Frankfurt am Main: DGI, pp. 183–196 (2001)Google Scholar
  6. 6.
    Burke, R.: Knowledge-based Recommender Systems. In: Kent, A. (ed.) Encyclopedia of Library and Information Systems, vol. 69(suppl. 32), Marcel Dekker, New York (2000)Google Scholar
  7. 7.
    Burke, R.: Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction 12(4), 331–370 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Callan, J., Smeaton, A., et al.: Personalization and Recommender Systems in Digital Libraries DELOS-NSF Workshop on Personalization and Recommender Systems in Digital Libraries (June 2003),
  9. 9.
    Casasola, E.: ProFusion PersonalAssistant: An Agent for Personalized Information Filtering on the WWW. Master’s thesis, The University of Kansas, Lawrence, KS (1998)Google Scholar
  10. 10.
    Chaffin, R., Herrmann, D.: Relation Element Theory: A New Account of the Representation and Process of Semantic Relations. In: Gorfein, D., Hoffman, R. (eds.) Memory and Learning: The Ebbinghaus Centennial Conference, Lawrence Erlbaum, Hilsdale (1987)Google Scholar
  11. 11.
    Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., Sartin, M.: Combining content-based and collaborative filters in an online newspaper. In: Proceedings of ACM SIGIR Workshop on Recommender (August 1999)Google Scholar
  12. 12.
    Cohen, P.R., Loiselle, C.L.: Beyond ISA: Structures for Plausible Inference in Semantic Networks. In: Proceedings AAAI 1988, St. Paul, MN (August 1988)Google Scholar
  13. 13.
    Cousins, S.B., Baldonado, M.: Paepcke. A.: A Systems View of Annotations. Report P9910022, Xerox Palo Alto Reserch Center (April 2000)Google Scholar
  14. 14.
    Cranor, L., Langheinrich, M., Marchiori, M., Presler-Marshall, M., Reagle, J.: The Platform for Privacy Preferences 1.0 (P3P1.0) Specification, W3C Candidate Recommendation (December 2000),
  15. 15.
    Fernandez, L., Sanchez, J.A., Garcia, A.: MiBiblio:Personal Spaces in a Digital Library Universe ACM DL 2000. In: DiSC, pp. 232–233 (2001)Google Scholar
  16. 16.
    Gabber, E., Gibbons, P.B., Matias, Y., Mayer, A.: How to Make Personalized Web Browsing Simple, Secure, and Anonymous. In: Hirschfeld, R. (ed.) FC 1997. LNCS, vol. 1318, pp. 17–31. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using Collaborative Filtering to Weave an Information Tapestry. Communications of the ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  18. 18.
    Gulla, J.A., van der Vos, B., Thiel, U.: An Abductive, Linguistic Approach to Model Retrieval. Data & Knowledge Engineering 23(1), 17–31 (1997)MATHCrossRefGoogle Scholar
  19. 19.
    Guttmann, R.H., Moukas, A.G., Maes, P.: Agent-based Mediated Electronic Commerce. a Survey. Knowledge Engineering Review 13(2), 147–159 (1998)CrossRefGoogle Scholar
  20. 20.
    Huang, Z., Chung, W., Ong, T.H., Chen, H.: A Graph-based Recommender System for Digital Libraries. In: JCDL 2002, July 13-17, Portland Oregon, USA (2002)Google Scholar
  21. 21.
    Huhns, M.N., Stephens, L.M.: Plausible Inferencing Using Extended Composition. IJCAI 2, 1420–1425 (1989)Google Scholar
  22. 22.
    Jones, G.J.F., Quested, D.J., Thomson, K.E.: Personalised delivery of news articles from multiple sources. In: Borbinha, J.L., Baker, T. (eds.) ECDL 2000. LNCS, vol. 1923, pp. 340–343. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. 23.
    Jühne, J., Jensen, A.T., Grønbæk, K.: Ariadne: A Java-based Guided Tour System for the World Wide Web. In: Proceedings of the 7th International World Wide Web Conference, Brisbane, Australia, April 14-18. Computer Networks, vol. 30, pp. 131–139. Elsevier Science, Amsterdam (1998)Google Scholar
  24. 24.
    Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Reidl, J.: Applying Collaborative Filtering to Usenet News. Communications of the ACM 40(4), 77–87 (1997)CrossRefGoogle Scholar
  25. 25.
    Konstan, J.A., Riedl, J., Borchers, A., Herlocker, J.L.: Recommender Systems: A Group- Lens Perspective. In Recommender Systems: Papers from the 1998 Workshop (AAAI Technical Report WS-98-08), pp. 60–64, AAAI Press, Menlo Park (1998) Google Scholar
  26. 26.
    Kautz, H., Selman, B., Shah, M.: Referral Web: Combining Social Networks and Collaborative Filtering. Communications of the ACM 40(3) (1997)Google Scholar
  27. 27.
    Kraut, H., Galegher, J., Edigo, C.: Intellectual Teamwork: Social and Technological Bases for Cooperative Work. Lawrence Erlbaum, Hillsdale (1990)Google Scholar
  28. 28.
    Krulwich, B.: Lifestlye Finder: Intelligent User Profiling Using Large-Scale Demographic Data. Artificial Intelligence Magazine 18(2), 37–45 (1997)Google Scholar
  29. 29.
    Lang, K.: NewsWeedweeder: Learning to Filter News. In: Proc. ICML 1995, pp. 331–336 (1995)Google Scholar
  30. 30.
    Lawrence, R.D., Almasi, G.S., Kotlyar, V., Viveros, M.S., Duri, S.: Personalization of supermarket product Recommendations. Data Mining and Knowledge Discovery 5(1-2), 11–32 (2001)MATHCrossRefGoogle Scholar
  31. 31.
    Lieberman, H.: Letizia: An Agent That Assists Web Browsing. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 1995), Montreal, August 1995, pp. 924–929. Morgan Kaufmann, San Francisco (1995)Google Scholar
  32. 32.
    Manber, U., Patel, A., Robison, J.: Experience with Personalization on Yahoo! Communications of the ACM 43(8), 35–39 (2000)CrossRefGoogle Scholar
  33. 33.
    Marshall, C.C.: Toward an Ecology of Hypertext Annotation. In: Proceedings of ACM Hypertext 1998, Pittsburgh, PA, USA, June 20-24, pp. 40–49 (1998)Google Scholar
  34. 34.
    Matthes, F., Niederée, C., Steffens, U.: C-Merge: A Tool for Policy-Based Merging of Resource Classifications. In: Constantopoulos, P., Solvberg, I. (eds.) ECDL 2001. LNCS, vol. 2163, p. 352. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  35. 35.
    McDonald, D.W.: Recommending Collaboration with Social Networks: A Comparative Evaluation. In: Proceedings of the ACM 2003 Conference on Human Factors in Computing Systems (CHI 2003), vol. 5(1), pp. 593–600 (2003)Google Scholar
  36. 36.
    Meng, X., Chen, Z.: Personalize Web Search using Information on Client’s Side. In: Proceedings of the Fifth International Conference of Young Computer Scientists, Nanjing, P.R.China, August 17-20, pp. 985–992. International Academic Publishers (1999)Google Scholar
  37. 37.
    Middleton, S., DeRoure, D., Shadbolt, N.: Capturing knowledge of User Preferences: Ontologies in Recommender Systems. In: Proc. of the ACM K-CAP’Oi. 2001, ACM Press, Victoria (2001)Google Scholar
  38. 38.
    Middleton, S., Alani, H., Shadbolt, N.R., Rource, D.C.: Exploiting Synergy Between Ontologies and Recommender Systems. In: Proc. of the Eleventh International World Wide Web Conference Semantic Web Workshop, Hawaii, USA (2002)Google Scholar
  39. 39.
    Mooney, R.J., Roy, L.: Content-Based Book Recommending Using Learning for Text Categorization. In: Proceedings of the Fifth ACM Conference on Digital Libraries, San Antonio, TX, pp. 195–204 (June 2000)Google Scholar
  40. 40.
    Niederée, C.: Personalization, Cooperation and Evolution in Digital Libraries. PhD Thesis, Technical University Hamburg-Harburg. (November 2002) (in German)Google Scholar
  41. 41.
    Niederée, C., Steffens, U., Hemmje, M.: Towards Digital Library Mediation for Web Services. In: Workshop Proceedings of the First Eurasian Conference on Advances in Information and Communication Technology, Shiraz, Iran, October 29-31 (2002)Google Scholar
  42. 42.
    Pazzani, M., Muramatsu, J., Billsus, D.: Syskill & Webert: Identifying interesting web sites. In: Proceedings of the National Conference on Artificial Intelligence, Portland, OR (1996)Google Scholar
  43. 43.
    Pazzani, M.: A framework for Collaborative, Content-based and Demographic Filtering. Artificial Intelligence Review 13(5-6), 393–408 (1999)CrossRefGoogle Scholar
  44. 44.
    Pretschner, A., Gauch, S.: Personalization on the Web. Technical Report, ITTC-FY2000-TR-13591-01, Information and Telecommunication Technology Center (ITTC), The University of Kansas, Lawrence, KS (December 1999)Google Scholar
  45. 45.
    Riecken, D.: Personalized Views of Personalization. Communications of the ACM 43(8), 27–28 (2000)Google Scholar
  46. 46.
    Röscheisen, M., Winograd, T., Paepcke, A.: Content Ratings and other Third-Party Value-Added Information - Defining an Enabling Platform. D-Lib Magazine (August 1995),
  47. 47.
    Rucker, J., Polanco, M.J.: ACM Special Issue on Recommender Systems Siteseer: Personalized Navigation for the Web. Communications of ACM 40(3), 73–77 (1997)CrossRefGoogle Scholar
  48. 48.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Application of Dimensionality Reduction in Recommender System A Case Study Technical Report CS-TR 00-043, Computer Science and Engineering Dept., University of Minnesota (July 2000)Google Scholar
  49. 49.
    Schafer, J., Konstan, J., Riedl, J.: Recommender Systems in E-Commerce,Recommender Systems in E-Commerce. In: ACM Conference on Electronic Commerce (EC 1999), pp. 158–166 (1999)Google Scholar
  50. 50.
    Stephanidis, C., Akoumianakis, D., Paramythis, A., Nikolaou, C.: User Interaction in Digital Libraries: coping with diversity through Adaptation. International Journal of Digital Libraries 3, 185–205 (2000)CrossRefGoogle Scholar
  51. 51.
    Stewart, A., Kermani, P., Mourad, G.: MediaMime: After the fact Authoring Annotation System. In: 7th Annual Conference on Innovations and Technology in Computer Science Education Aarhus Denmark (2002)Google Scholar
  52. 52.
    Tom, E.G.: Serendipitous Information Retrieval. In: Proceedings of the First DELOS Network of Excellence Workshop on Information Seeking, Searching and Querying Digital Libraries, Zurich, Switzerland. ERCIM, pp. 11–12 (December 2000)Google Scholar
  53. 53.
    Tran, T., Cohen, R.: Hybrid Recommender Systems for Electronic Commerce. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI 2000) Workshop on Knowledge-Based Electronic Markets, pp. 78–84 (July 2000)Google Scholar
  54. 54.
    Towle, B., Quinn, C.N.: Knowledge Based Recommender Systems Using Explicit User Models. In: Knowledge-Based Electronic Markets Workshop at AAAI 2000, Austin, TX (2000)Google Scholar
  55. 55.
    Wasserman, S., Galaskiewicz, J. (eds.): Advances in Social Network Analysis. Sage, Thousand Oaks (1994)Google Scholar
  56. 56.
    Wenger, E., Snyder, W.: Communities of Practice: The Organizational Frontier. Harvard Business Review (January-February 2000)Google Scholar
  57. 57.
    Winston, M.E., Chaffin, R., Herrmann, D.: A taxonomy of Part-Whole Relations. Cognitive Science 11, 417–444 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Erich Neuhold
    • 1
  • Claudia Niederée
    • 1
  • Avaré Stewart
    • 1
  1. 1.Fraunhofer-IPSIDarmstadtGermany

Personalised recommendations