Advertisement

Fair Cost Allocations under Conflicts — A Game-Theoretic Point of View —

  • Yoshio Okamoto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2906)

Abstract

We study the cost allocation problem when the players are involved in a conflict situation. More formally, we consider a minimum coloring game, introduced by Deng, Ibaraki & Nagamochi, and provide algorithms for the core, the τ-value, the nucleolus and the Shapley value on some classes of graphs. The investigation gives several insights to the relationship of algorithm theory with cooperative games.

Keywords

Polynomial Time Bipartite Graph Cooperative Game Chromatic Number Cost Allocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Curiel, I.J.: Cooperative Game Theory and Applications: Cooperative Games Arising from Combinatorial Optimization Problems. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  2. 2.
    Deng, X., Ibaraki, T., Nagamochi, H.: Algorithmic aspects of the core of combinatorial optimization games. Math. Oper. Res. 24, 751–766 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Deng, X., Ibaraki, T., Nagamochi, H., Zang, W.: Totally balanced combinatorial optimization games. Math. Program 87, 441–452 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Driessen, T.: Cooperative Games, Solutions and Applications. Kluwer Academic Publishers, Dordrecht (1988)zbMATHGoogle Scholar
  5. 5.
    Faigle, U., Kern, W.: The Shapley value for cooperative games under precedence constraints. Internat. J. Game Theory 21, 249–266 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Faigle, U., Kern, W., Kuipers, J.: Computing the nucleolus of min-cost spanning tree games is NP-hard. Internat. J. Game Theory 27, 443–450 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Faigle, U., Kern, W., Kuipers, J.: On the computation of the nucleolus of a cooperative game. Internat. J. Game Theory 30, 79–98 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pacific J. Math. 15, 835–855 (1965)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Gillies, D.B.: Some theorems on n-person games. Ph.D. Thesis, Princeton University (1953)Google Scholar
  10. 10.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)zbMATHGoogle Scholar
  11. 11.
    Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, 2nd edn. Springer, Berlin (1993)zbMATHGoogle Scholar
  12. 12.
    Kopelowitz, A.: Computation of the kernels of simple games and the nucleolus of n-person games. RM 31, Research Program in Game Theory and Mathematical Economics, The Hebrew University of Jerusalem (1967)Google Scholar
  13. 13.
    Kuipers, J.: A polynomial time algorithm for computing the nucleolus of convex games. Report M 96-12, Maastricht University (1996)Google Scholar
  14. 14.
    Lovász, L.: Normal hypergraphs and the perfect graph conjecture. Discrete Math. 2, 253–267 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Maschler, M., Peleg, B., Shapley, L.S.: Geometric properties of the kernel, nucleolus and related solution concepts. Math. Oper. Res. 4, 303–338 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Matsui, T., Matsui, Y.: A survey of algorithms for calculating power indices of weighted majority games. J. Oper. Res. Soc. Japan 43, 71–86 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Megiddo, N.: Computational complexity and the game theory approach to cost allocation for a tree. Math. Oper. Res. 3, 189–196 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Mohri, H., Okamoto, Y.: Discrete optimization and cooperative games (2). Comm. Oper. Res. Soc. Japan 48, 114–120 (2003) (in Japanese)Google Scholar
  19. 19.
    Provan, J.S., Ball, M.O.: The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. Comput. 12, 777–788 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Okamoto, Y.: Submodularity of some classes of the combinatorial optimization games. Math. Methods Oper. Res. 58 (2003) (to appear)Google Scholar
  21. 21.
    Schmeidler, D.: The nucleolus of a characteristic function game. SIAM J. Appl. Math. 17, 1163–1170 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Shapley, L.S.: Cores of convex games. Internat. J. Game Theory 1, 11–26 (1971); Errata is in the same volume, 1972, pp. 199Google Scholar
  23. 23.
    Shapley, L.S.: A value for n-person games. In: Kuhn, H., Tucker, A.W. (eds.) Contributions to the Theory of Games II, pp. 307–317. Princeton University Press, Princeton (1953)Google Scholar
  24. 24.
    Solymosi, T., Raghavan, T.E.S.: An algorithm for finding the nucleolus of assignment games. Internat. J. Game Theory 23, 119–143 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Tijs, S.H.: Bounds for the core and the τ -value. In: Moeshlin, O., Pallaschke, P. (eds.) Game Theory and Mathematical Economics, pp. 123–132. North Holland, Amsterdam (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Yoshio Okamoto
    • 1
  1. 1.Institute of Theoretical Computer Science, Department of Computer ScienceETH ZürichZürichSwitzerland

Personalised recommendations