Range Mode and Range Median Queries on Lists and Trees

  • Danny Krizanc
  • Pat Morin
  • Michiel Smid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2906)


We consider algorithms for preprocessing labelled lists and trees so that, for any two nodes u and v we can answer queries of the form: What is the mode or median label in the sequence of labels on the path from u to v.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Berkman, O., Breslauer, D., Galil, Z., Schieber, B., Vishkin, U.: Highly parallelizable problems. In: Proceedings of teh 21st Annual ACM Symposium on the Theory of Computing, pp. 309–319 (1989)Google Scholar
  3. 3.
    Chazelle, B.: A theorem on polygon cutting with applications. In: Proceedings of the IEEE Symposium on Foundations of Computer Science, pp. 339–349 (1982)Google Scholar
  4. 4.
    Cole, R., Vishkin, U.: The accelerated centroid decomposition technique for optimal parallel tree evaluation in logarithmic time. Algorithmica 3, 329–346 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. Journal of Computer and System Sciences 38(1), 86–124 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Krijnen, T., Meertens, L.G.L.T.: Making B-trees work for B. Technical Report 219/83, The Mathematical Center, Amsterdam (1983)Google Scholar
  7. 7.
    Luecker, G.S.: A data structure for orthogonal range queries. In: Proceedings of the 19th IEEE Symposium on Foundations of Computer Science, pp. 28–34 (1978)Google Scholar
  8. 8.
    Myers, E.W.: AVL dags. Technical Report 82-9, Department of Computer Science, University of Arizona (1982)Google Scholar
  9. 9.
    Myers, E.W.: Efficient applicative data structures. In: Conference Record eleventh Annual ACM Symposium on Principles of Programming Languages, pp. 66–75 (1984)Google Scholar
  10. 10.
    Reps, T., Teitelbaum, T., Demers, A.: Incremental context-dependent analysis for language-based editors. ACM Transactions on Programming Languages and Systems 5, 449–477 (1983)CrossRefGoogle Scholar
  11. 11.
    Santoro, N., Khatib, R.: Labelling and implicit routing in networks. The Computer Journal 1, 5–8 (1985)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Sarnak, N., Tarjan, R.E.: Planar point location using persistent search trees. Communications of the ACM 29(7), 669–679 (1986)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Swart, G.: Efficient algorithms for computing geometric intersections. Technical Report #85-01-02, Department of Computer Science, University of Washington, Seattle (1985)Google Scholar
  14. 14.
    Thorup, M.: On RAM priority queues. In: Proceedings of the 7th ACM-SIAM Symposium on Discrete Algorithms, pp. 59–67 (1996)Google Scholar
  15. 15.
    van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Information Processing Letters 6, 80–82 (1977)zbMATHCrossRefGoogle Scholar
  16. 16.
    Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ(n). Information Processing Letters 17(2), 81–84 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Willard, D.E.: New data structures for orthogonal queries. SIAM Journal on Computing, 232–253 (1985)Google Scholar
  18. 18.
    Yao, A.C.: Space-time tradeoff for answering range queries. In: Proceedings of the 14th Annual ACM Symposium on the Theory of Computing, pp. 128–136 (1982)Google Scholar
  19. 19.
    Yao, A.C.: On the complexity of maintaining partial sums. SIAM Journal on Computing 14, 277–288 (1985)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Danny Krizanc
    • 1
  • Pat Morin
    • 2
  • Michiel Smid
    • 2
  1. 1.Department of Mathematics and Computer ScienceWesleyan UniversityMiddletownUSA
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada

Personalised recommendations