Vision System for Subpixel Laser Stripe Profile Extraction with Real Time Operation

  • Ulises Martínez
  • Benjamin Valera
  • José Sánchez
  • Victor García
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)

Abstract

Computer vision systems are playing an important role in 3D measurement for industrial applications. Real time image processing algorithms are useful in order to achieve reliability in feature extraction from the global environment starting from planar images. For example, in a structured light vision system is essential to extract the pattern that a laser source is shaping with the objects under inspection. In this sense, this work describes a single strip image extraction algorithm that could be used as an analysis tool in those structured light systems. The experimental setup is implemented using the following equipment: A PC equipped with a frame grabber, a high-resolution CCD camera, a laser stripe projector and specific software developed using Visual C++6. The system accomplishes with real time operation and high subpixel accuracy.

Keywords

Real Time Operation Camera Calibration Coordinate Measuring Machine Frame Grabber Circular Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aguilar, J., Torres, F., Lope, M.A.: Stereo Vision for 3D Measurement: Accuracy Analysis, Calibration and Industrial Applications. Measurement 18(4), 193–200 (1996)CrossRefGoogle Scholar
  2. 2.
    Chi, L.-C., Chih, L.-Y.: A new approach to high precision 3-D measuring system. Image and Vision Computing 17, 805–814 (1999)CrossRefGoogle Scholar
  3. 3.
    Data Translation: SDK DT-Active Open Layers User’s Manual. Data Translation, USA (1999) Google Scholar
  4. 4.
    Harris, K., Efstratiadis, S.N., Maglaveras, N., Gourassas, J., Pappas, C., Louridas, G.: Coronary Arterial Tree Extraction based on Artery Tracking and Mathematical Morphology. Computers in Cardiology 25, 769–772 (1998)Google Scholar
  5. 5.
    Izquierdo, M.A.G., Sánchez, M.T., Ibáñez, A., Ullate, L.G.: Sub-pixel measurement of 3D surfaces by laser scanning. Sensors and Actuators 76, 1–8 (1999)CrossRefGoogle Scholar
  6. 6.
    Steger, C.: Subpixel-Precise Extraction of Lines and Edges. International Archives of Photogrammetry and Remote Sensing XXXIII, 141–156 (2000)Google Scholar
  7. 7.
    Tsai, R.Y.: A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses. IEEE Journal of Robotics and Automation 3(4), 323–344 (1987)CrossRefGoogle Scholar
  8. 8.
    Weng, J., Cohen, P., Herniou, M.: Camera Calibration with Distortion Models and Accuracy Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(10), 965–980 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Ulises Martínez
    • 1
  • Benjamin Valera
    • 1
  • José Sánchez
    • 1
  • Victor García
    • 1
  1. 1.Centro de Ciencias Aplicadas y Desarrollo Tecnológico, UNAMCiudad UniversitariaD.F., México

Personalised recommendations