Robust Markers for Blood Vessels Segmentation: A New Algorithm

  • Roberto Rodríguez
  • Teresa E. Alarcón
  • Oriana Pacheco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)

Abstract

In this paper, we present a new algorithm to obtain robust markers for blood vessels segmentation in malignant tumors. We propose a two-stage segmentation strategy which involves: 1) extracting an approximate region containing blood vessels and part of the background, and 2) segmenting blood vessels from the background within this region. The approach was effectively very useful in blood vessels segmentation and its validity was tested by using the watershed method. The proposed segmentation technique is tested on manual segmentation. It is demonstrated by extensive experimentation, by using real images, that the proposed strategy was suitable for our application.

Keywords

Original Image Digital Image Processing Catchment Basin Watershed Segmentation Robust Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    González, R., Woods, R.E.: Digital Image Processing. Addison-Wesley Publishing Company, Inc., Reading (1992)Google Scholar
  2. 2.
    Boschner, B.H., Cote, R.J., Weidner, N., Groshen, S., Chen, S.C., Skinner, D.G., Nichols, P.W.: Angiogenesis in bladder cancer: relationship between microvessel density and tumor prognosis. J. Natl. Cancer Inst. 87 21(1), 1603–1612 (1995)CrossRefGoogle Scholar
  3. 3.
    Díaz-Flores, L., Gutiérrez, R., Varela, H.: Angiogenesis: an update. Histol Histopath 9, 807–843 (1992)Google Scholar
  4. 4.
    Weidner, N., Carroll, P.R., Flax, J., Blumenfeld, W., Folkman, J.: Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. American Journal of Pathology 143(2) (1993)Google Scholar
  5. 5.
    Kenong, W., Gauthier, D., Levine, M.D.: Live Cell Image Segmentation. IEEE Transactions on Biomedical Engineering 42(1) enero (1995)Google Scholar
  6. 6.
    Sijbers, J., Scheunders, P., Verhoye, M., Van der Linden, A., Van Dyck, D., Raman, E.: Watershed-based segmentation of 3D MR data for volume quantization. Magnetic Resonance Imaging 15(6), 679–688 (1997)CrossRefGoogle Scholar
  7. 7.
    Chin-Hsing, C., Lee, J., Wang, J., Mao, C.W.: Color image segmentation for bladder cancer diagnosis. Mathl. Comput. Modeling 27(2), 103–120 (1998)MATHCrossRefGoogle Scholar
  8. 8.
    Vincent, L.: Morphological grayscale reconstruction in Image Analysis: Applications and Efficient Algorithms. IEEE Transactions on Image Processing 2, 176–201 (1993)CrossRefGoogle Scholar
  9. 9.
    Vicent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Transact. Pattern Anal. Machine Intell. 13, 583–593 (1991)CrossRefGoogle Scholar
  10. 10.
    Rodríguez, R., Alarcón, T.E., Sánchez, L.: MADIP: Morphometrical Analysis by Digital Image Processing. In: Proceedings of the IX Spanish Symposium on Pattern Recognition and Image Analysis, Spain, vol. I, pp. 291–298 (2001) ISBN 84-8021-349-3Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Roberto Rodríguez
    • 1
  • Teresa E. Alarcón
    • 1
  • Oriana Pacheco
    • 1
  1. 1.Institute of Cybernetics, Mathematics and Physics (ICIMAF)Digital Signal Processing GroupLa HabanaCUBA

Personalised recommendations