Extension of a New Method for Surface Reconstruction from Cross Sections

  • Joaquín Pina Amargós
  • René Alquézar Mancho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2905)

Abstract

The principal steps of a new method to solve the problem of surface reconstruction from parallel cross sections are presented in this paper. This method constitutes the extension of one previously proposed by the authors using the skeleton to solve the investigation problem. The method guarantees the correct topology of the surface without altering the original contours. Some results are shown that illustrate the excellent performance of the method in particular difficult cases not solved previously. All the cases analyzed are manipulated in the same way. In real cases, the global time complexity improves the quadratic time of the quickest consulted methods.

Keywords

Surface Reconstruction Adjacent Section Planar Cross Section Investigation Problem Correct Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bajaj, C.L., Coyle, E.J., Lin, K.N.: Arbitrary topology shape reconstruction from planar cross sections. Graphical Models and Image Processing 58, 524–543 (1996)CrossRefGoogle Scholar
  2. 2.
    Barequet, G., Sharir, M.: Piecewise-linear interpolation between polygonal slices. Computer Vision and Image Understanding 63(2), 251–272 (1996)MATHCrossRefGoogle Scholar
  3. 3.
    Barequet, G., Shapiro, D., Tal, A.: Multilevel sensitive reconstruction of polyhedral surfaces from parallel slices. The Visual Computer 16(2), 116–133 (2000)CrossRefGoogle Scholar
  4. 4.
    Boissonnat, J.D.: Shape reconstruction from planar cross sections. Computer Vision, Graphics and Image Processing 44, 1–29 (1988)CrossRefGoogle Scholar
  5. 5.
    Christiansen, H.N., Sederberg, T.W.: Conversion of contour line definitions into polygonal element mosaics. Computer Graphics 13, 187–192 (1978)CrossRefGoogle Scholar
  6. 6.
    Kégl, B., Krzyzak, A.: Piecewise linear skeletonization using principal curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(1), 59–74 (2002)CrossRefGoogle Scholar
  7. 7.
    Keppel, E.: Approximating complex surfaces by triangulation of contour lines. IBM Journal of Research and Development 19, 2–11 (1975)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Klein, R., Schilling, A., Straßen, W.: Reconstruction and simplification of surface from contours. Graphical Models 62(6), 429–443 (2000)MATHCrossRefGoogle Scholar
  9. 9.
    Oliva, J.M., Perrin, M., Coquillart, S.: 3D reconstruction of complex polyhedral shapes from contours using a simplified generalized Voronoi diagram. Comp. Graphics Forum 15(3), C397–C408 (1996)Google Scholar
  10. 10.
    Pina, J., Alquézar, R.: A new method to solve the branching problem in surfaces of threedimensional models reconstructed from parallel cross sections. Revista Cubana de Investigación Operacional, Universidad de La Habana, Cuba (to appear)Google Scholar
  11. 11.
    Pina, J., Alquézar, R.: Results of a new method for surface reconstruction from tomographic images. In: Proc., V Cong. Soc. Cub. Bioingeniería, T0090, Havana, Cuba (2003) Google Scholar
  12. 12.
    Pina, J., Alquézar, R.: Reconstruction of surfaces from cross sections using skeleton information. In: Proc. 8th Iberoamerican Congress on Pattern Recognition, Havana, Cuba (2003)Google Scholar
  13. 13.
    Sederberg, T.W., Klimaszewski, K.S., Hong, M.: Triangulation of branching contours using area minimization. Int. J. of Computational Geometry & App. 8(4), 389–406 (1998)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Surazhsky, T., Surazhsky, V., Barequet, G., Tal, A.: Blending polygonal shapes with different topologies. Computers & Graphics 25, 29–39 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Joaquín Pina Amargós
    • 1
  • René Alquézar Mancho
    • 2
  1. 1.Centro de Estudios de Ingeniería de Sistemas (CEIS)Polytechnic Institute “José A Echeverría” (CUJAE)HavanaCuba
  2. 2.Departament de Llenguatges i Sistemes Informàtics (LSI)Universitat Politècnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations