Advertisement

Towards the Adaptive Semantic Web

  • Peter Dolog
  • Nicola Henze
  • Wolfgang Nejdl
  • Michael Sintek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2901)

Abstract

In this paper we show how personalization techniques from the area of adaptive hypermedia can be achieved in the semantic web. Our approach is based on rule-based reasoning enabled by semantic web technologies. The personalization techniques are formalized as reasoning rules. The rules are able to reason over distributed information resources annotated with semantic web metadata formats. This leads towards the realization of an adaptive semantic web idea which provides personalized, adaptive access to information, services, or other, distributed resources.

Keywords

adaptive hypermedia personalization adaptive web semantic web 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, K., Taylor, R., Whitehead, E.: Chimera: Hypermedia for heterogeneous software development environments. ACM Transactions on Information Systems 18(3), 211–245 (2000)CrossRefGoogle Scholar
  2. 2.
    Association of Computing Machinery: The ACM computer classification system (2002), http://www.acm.org/class/1998/
  3. 3.
    Bailey, C., Hall, W., Millard, D., Weal, M.: Towards open adaptive hypermedia. In: Proccedings of the 2nd International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2002), Malaga, Spain (May 2002)Google Scholar
  4. 4.
    Basu, C., Hirsh, H., Cohen, W.W.: Recommendation as classification: Using social and content-based information in recommendation. In: Fifteenth National Conference on Artificial Intelligence, Madison, USA, pp. 714–720 (1998)Google Scholar
  5. 5.
    Berners-Lee, T.: The semantic web - mit/lcs seminar, http://www.w3c.org/2002/Talks/09-lcs-sweb-tbl/
  6. 6.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (May 2001)Google Scholar
  7. 7.
    Bra, P.D., Aerts, A., Smits, D., Stash, N.: AHA! version 2.0. In: Proceedings of the AACE ELearn 2002 conference, October 2002, pp. 240–246 (2002)Google Scholar
  8. 8.
    Bra, P.D., Houben, G.-J., Wu, H.: AHAM: A dexter-based reference model for adaptive hypermedia. In: Tochtermann, K., Westbomke, J., Wiil, U., Leggett, J. (eds.) Proc. of ACM Conference on Hypertext and Hypermedia, Darmstadt, Germany, February 1999, pp. 147–156 (1999)Google Scholar
  9. 9.
    Brusilovsky, P.: Adaptive hypermedia. User Modeling and User-Adapted Interaction 11(1-2), 87–100 (2001)zbMATHCrossRefGoogle Scholar
  10. 10.
    Brusilovsky, P., Maybury, M.: The Adaptive Web. Communications of the ACM (2002)Google Scholar
  11. 11.
    Bry, F., Schaffert, S.: A gentle introduction into xcerpt, a rule-based query and transformation language for xml. In: International Workshop on Rule Markup Languages for Buisiness Rules on the Semantic Web, Sardinia, Italy (June 2002)Google Scholar
  12. 12.
    Calvanese, D., Giacomo, G.D., Lenzerini, M.: Ontology of integration and integration of ontologies. In: Proceedings of the 2001 Description Logic Workshop, DL 2001 (2001)Google Scholar
  13. 13.
    Campione, M., Walrath, K.: The java tutorial, http://java.sun.com/docs/books/tutorial/
  14. 14.
    Campione, M., Walrath, K.: The Java(TM) Tutorial: A Short Course on the Basics, 3rd edn. Addison-Wesley, Reading (2000)Google Scholar
  15. 15.
  16. 16.
    Decker, S., Brickley, D., Saarela, J., Angele, J.: A query and inference service for RDF. In: QL 1998 — The Query Languages Workshop, Boston, USA World- WideWeb Consortium (W3C) (1998)Google Scholar
  17. 17.
    Decker, S., Sintek, M., Nejdl, W.: The model-theoretic semantics of triple.Google Scholar
  18. 18.
    Dolog, P., Gavriloaie, R., Nejdl, W., Brase, J.: Integrating adaptive hypermedia techniques and open rdf-based environments. In: Proc. of 12th International World Wide Web Conference, Budapest, Hungary (May 2003)Google Scholar
  19. 19.
    Dolog, P., Nejdl, W.: Benefits and challenges of the semantic web for user modelling. In: International Workshop on Adaptive Hypermedia and Adaptive Webbased Systems (AH 2003), Budapest, Hungary (2003)Google Scholar
  20. 20.
    The Dublin Core Metadata Initiative, http://dublincore.org/
  21. 21.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logic. In: Twelth International World Wide Web Conference, Budapest, Hungary (May 2003)Google Scholar
  22. 22.
    Heflin, J., Munoz-Avila, H.: Lcw-based agent planning for the semantic web. In: Ontologies and the Semantic Web. Papers from the 2002 AAAI Workshop WS-02-11, Menlo Park, CA, pp. 63–70 (November 2002)Google Scholar
  23. 23.
    Henze, N., Nejdl, W.: Adaptation in open corpus hypermedia. IJAIED Special Issue on Adaptive and Intelligent Web-Based Systems 12 (2001)Google Scholar
  24. 24.
    Henze, N., Nejdl, W.: Knowledge modeling for open adaptive hypermedia. In: Proccedings of the 2nd International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2002), Malaga, Spain (2002)Google Scholar
  25. 25.
    Henze, N., Nejdl, W.: Logically characterizing adaptive educational hypermedia systems. In: International Workshop on Adaptive Hypermedia and Adaptive Webbased Systems (AH 2003), Budapest, Hungary (2003)Google Scholar
  26. 26.
    Horrocks. The FaCT System (2001), http://www.cs.man.ac.uk/~horrocks/FaCT/
  27. 27.
    Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and framebased languages. Journal of the ACM 42, 741–843 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Draft Standard, L.O.M.: for Learning Object Metadata, http://ltsc.ieee.org/wg12/doc.html
  29. 29.
    Miklós, Z., Neumann, G., Zdun, U., Sintek, M.: Querying semantic web resources using TRIPLE views. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 517–532. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Rada, R.: Interactive Media. Springer, Heidelberg (1995)Google Scholar
  32. 32.
    Reference model for an open archival information system, oais (2002), http://ssdoo.gsfc.nasa.gov/nost/isoas/
  33. 33.
    Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating “word of mouth”. In: Proceedings of CHI 1995 – Human Factors in Computing Systems, pp. 210–217 (1995)Google Scholar
  34. 34.
    Sintek, M., Decker, S.: TRIPLE—A query, inference, and transformation language for the semantic web. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  35. 35.
    Sintek, M., Decker, S.: Triple - an rdf query, inference, and transformation language. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 364–378. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  36. 36.
    SUNY. The XSB programming system. Dept. of Computer Science, SUNY at Stony Brook (2000), http://www.cs.sunysb.edu/~sbprolog/xsb-page.html
  37. 37.
    van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic programs. Journal of the ACM 38(3), 620–650 (1991)zbMATHGoogle Scholar
  38. 38.
    W3C. Resource Description Framework (RDF) Schema Specification 1.0 (2001), http://www.w3.org/TR/2000/CR-rdf-schema-20000327/
  39. 39.
    W3C. Semantic Web Activity: Resource Description Framework, RDF (2001), http://www.w3.org/RDF/

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Peter Dolog
    • 1
  • Nicola Henze
    • 2
  • Wolfgang Nejdl
    • 1
    • 2
  • Michael Sintek
    • 3
  1. 1.Learning Lab Lower SaxonyUniversity of HannoverHannoverGermany
  2. 2.ISI- Knowledge-Based SystemsUniversity of HannoverHannoverGermany
  3. 3.German Research Center for Artificial Intelligence (DFKI) GmbHKnowledge Management GroupKaiserslauternGermany

Personalised recommendations