Integrating Description Logics and Answer Set Programming

  • Stijn Heymans
  • Dirk Vermeir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2901)

Abstract

We integrate an expressive class of description logics (DLs) and answer set programming by extending the latter to support inverted predicates and infinite domains, features that are present in most DLs. The extended language, conceptual logic programming (CLP) proves to be a viable alternative for intuitively representing and reasoning nonmonotonically, in a decidable way, with possibly infinite knowledge. Not only can conceptual logic programs (CLPs) simulate finite answer set programming, they are also flexible enough to simulate reasoning in an expressive class of description logics, thus being able to play the role of ontology language, as well as rule language, on the Semantic Web.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alsaç, G., Baral, C.: Reasoning in Description Logics using Declarative Logic Programming (2002), http://www.public.asu.edu/guray/dlreasoning.pdf
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description Logic Handbook. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  3. 3.
    Bechhofer, S., Goble, C., Horrocks, I.: DAML+OIL is not Enough. In: Proceedings of the First Semantic Web Working Symposium (SWWS 2001), pp. 151–159. CEUR (2001)Google Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 34–43 (May 2001)Google Scholar
  5. 5.
    Borgida, A.: On the Relative Expressiveness of Description Logics and predicate logics. Artificial Intelligence 82(1-2), 353–367 (1996)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Cadoli, M., Palopoli, L., Lenzerini, M.: Datalog and Description Logics: Expressive Power. In: Cluet, S., Hull, R. (eds.) DBPL 1997. LNCS, vol. 1369, pp. 281–298. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating Datalog and Description Logics. J. of Intelligent and Cooperative Information Systems 10, 227–252 (1998)CrossRefGoogle Scholar
  8. 8.
    Fensel, D., Horrocks, I., van Harmelen, F., Decker, S., Erdmann, M., Klein, M.: OIL in a Nutshell. In: Dieng, R., Corby, O., et al. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 1–16. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Fikes, R., McGuinness, D.: An Axiomatic Semantics for RDF, RDF-S, and DAML+OIL, http://www.w3.org/TR/daml+oil-axioms (December 2001) W3C Note
  10. 10.
    Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: Kowalski, R.A., Bowen, K. (eds.) Proceedings of the Fifth International Conference on Logic Programming, pp. 1070–1080. The MIT Press, Cambridge (1988)Google Scholar
  11. 11.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description Logic Programs: Combining Logic Programs with Description Logic. In: Proceedings of Twelfth International World Wide Web Conference (WWW 2003), pp. 48–57 (2003)Google Scholar
  12. 12.
    Heymans, S., Vermeir, D.: A Defeasible Ontology Language. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 1033–1046. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Heymans, S., Vermeir, D.: Integrating Ontology Languages and Answer set Programming. In: Fourteenth International Workshop on Database and Expert Systems Applications, Prague, Czech Republic, September 2003, pp. 584–588. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  14. 14.
    Heymans, S., Vermeir, D.: Ontology Reasoning using an Extension of Answer Set Programming. Technical report, Vrije Universiteit Brussel, Dept. of Computer Science (2003)Google Scholar
  15. 15.
    Horrocks, I., Sattler, U., Tobies, S.: Practical Reasoning for Expressive Description Logics. In: Ganzinger, H., McAllester, D., Voronkov, A. (eds.) LPAR 1999. LNCS, vol. 1705, pp. 161–180. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    Horrocks, I., Sattler, U.: A Description Logic with Transitive and Converse Roles and Role Hierarchies. LTCS-Report 98-05, LuFg Theoretical Computer Science, RWTHAachen, Germany (1998)Google Scholar
  17. 17.
    Horrocks, I.: A Denotational Semantics for Standard OIL and Instance OIL (2000), http://www.ontoknowledge.org/oil/downl/semantics.pdf
  18. 18.
  19. 19.
    Lifschitz, V.: Answer Set Programming and Plan Generation. Artificial Intelligence 138(1-2), 39–54 (2002)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Uschold, M., Grüninger, M.: Ontologies: Principles, Methods, and Applications. Knowledge Engineering Review 11(2), 93–155 (1996)CrossRefGoogle Scholar
  21. 21.
    van Harmelen, F., Hendler, J., Horrocks, I., Stein, L.A., McGuinness, D.L., Patel-Schneider, P.F.: Web Ontology Language (OWL) Reference Version 1.0. W3C Working Draft (February 2003), http://www.w3.org/TR/owl-ref/
  22. 22.
    Vardi, M.Y.: Why isModal Logic so Robustly Decidable? Technical Report TR97-274, Rice University, April 12 (1997) Google Scholar
  23. 23.
    Vardi, M.Y.: Reasoning about the Past with Two-Way Automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Stijn Heymans
    • 1
  • Dirk Vermeir
    • 1
  1. 1.Dept. of Computer ScienceVrije Universiteit Brussel, VUBBrusselsBelgium

Personalised recommendations