Quantitative Methoden in den Internationalen Beziehungen

  • Constantin Ruhe
  • Gerald Schneider
  • Gabriele Spilker
Chapter
Part of the Springer Reference Sozialwissenschaften book series (SRS)

Zusammenfassung

Dieses Kapitel gibt einen Überblick über die Verwendung quantitativer Methoden in den Internationalen Beziehungen. Nach einer kurzen Diskussion der verschiedenen Probleme, durch die eine quantitative Untersuchung scheitern kann, beschreiben wir im zweiten Teil des Kapitels die Analyse von experimentellen sowie Beobachtungsdaten. Im dritten Teil dieses Kapitels illustrieren wir dann mithilfe eines der Literatur entnommenen Beispiels mögliche Schwierigkeiten bei der Durchführung einer quantitativen Analyse. Das Kapitel endet mit einer Schlussbetrachtung und einem Überblick über einige neuere Trends in der Verwendung von quantitativen Methoden in den Internationalen Beziehungen.

Schlüsselwörter

Quantitative Methoden Kausalität Forschungsdesign Experiment Beobachtungsdaten 

Literatur

  1. Achen, Christopher H. 1987. The statistical analysis of quasi-experiments. Berkeley: University of California Press.Google Scholar
  2. Achen, Christopher H. 2002. Toward a new political methodology: Microfoundations and ART. Annual Review of Political Science 5:423–450.CrossRefGoogle Scholar
  3. Achen, Christopher H., und Duncan Snidal. 1989. Rational deterrence theory and comparative case studies. World Politics 41:144–169.CrossRefGoogle Scholar
  4. Albert, Hans. 1965. Modell-Platonismus. Der neoklassische Stil des ökonomischen Denkens in kritischer Beleuchtung. In Logik der Sozialwissenschaften, Hrsg. Ernst Topitsch, 406–434. Köln: Kiepenheuer & Witsch.Google Scholar
  5. Anderson, Chris. 2009. The end of theory: The data Deluge makes the scientific method obsolete http://www.wired.com/science/discoveries/magazine/16-07/pb_theory. Zugegriffen am 30.12.2013.
  6. Bechtel, Michael M., und Gerald Schneider. 2010. Eliciting substance from ‚hot air‘: Financial market responses to EU summit decisions on european defense. International Organization 64(2): 199–223.CrossRefGoogle Scholar
  7. Beck, Nathaniel. 2001. Time-series cross-section data: What have we learned in the past few years? Annual Review of Political Science 4:271–293.CrossRefGoogle Scholar
  8. Beck, Nathaniel, Gary King, und Langche Zeng. 2000. Improving quantitative studies of international conflict: A conjecture. American Political Science Review 94(1): 21–36.CrossRefGoogle Scholar
  9. Beck, Nathaniel, Gary King, und Langche Zeng. 2004. Theory and evidence in international conflict: A response to de Marchi, Gelpi and Grynaviski. American Political Science Review 98(2): 379–389.CrossRefGoogle Scholar
  10. Becker, Sascha O., Peter H. Egger, und Maximilian von Ehrlich. 2010. Going NUTS: The effect of EU structural funds on regional performance. Journal of Public Economics 94(9–10): 578–590.CrossRefGoogle Scholar
  11. Bennett, D. Scott, und Allan C. Stam. 2003. The behavioral origins of war. Ann Arbor: University of Michigan Press.CrossRefGoogle Scholar
  12. Bernauer, Thomas, und Nils Petter Gleditsch, Hrsg. 2012. Event data in the study of conflict. International Interactions 38(4): 375–569.Google Scholar
  13. Blendin, Hanja, und Gerald Schneider. 2012. Nicht jede Form von Stress mindert die Entscheidungsqualität: ein Laborexperiment zur Groupthink-Theorie. Jahrbuch für Handlungs- und Entscheidungstheorie 7:61–80.CrossRefGoogle Scholar
  14. Bueno de Mesquita, Bruce, Nils Petter Gleditsch, Patrick James, Gary King, Claire Metelitis, James Lee Ray, Bruce Russett, Håvard Strand, und Brandon Valerino. 2003. Symposium on replication in international studies research. International Studies Perspectives 4(1): 72–107.CrossRefGoogle Scholar
  15. Cederman, Lars-Erik, Kristian Skrede Gleditsch, und Halvard Buhaug. 2013. Inequality, grievances, and civil war. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Clarke, Kevin. 2005. The phantom menace: Omitted variable bias in econometric research. Conflict Management and Peace Science 22(4): 341–352.CrossRefGoogle Scholar
  17. Clarke, Kevin A., und David M. Primo. 2012. A model discipline: Political science and the logic of representations. Oxford: Oxford University Press.CrossRefGoogle Scholar
  18. Diekmann, Andreas. 2007. Empirische Sozialforschung. Grundlagen, Methoden, Anwendungen, 17. Aufl. Reinbek: Rowohlt.Google Scholar
  19. Edgington, Eugene S., und Patrick Onghena. 2007. Randomization tests. Boca Raton: Chapman & Hall/CRC.Google Scholar
  20. Fearon, James. 1994. Signalling versus the balance of power and interests: An empirical test of a crisis bargaining model. Journal of Conflict Resolution 38(2): 236–269.CrossRefGoogle Scholar
  21. Fearon, James, Macartan Humphreys, und Jeremy M. Weinstein. 2009. Can development aid contribute to social cohesion after civil war? Evidence from a field experiment in post-conflict Liberia. American Economic Review 99(2): 287–291.CrossRefGoogle Scholar
  22. Gartner, Scott S. 2008. The multiple effects of casualties on public support for war: An experimental approach. American Political Science Review 102(1): 95–106.CrossRefGoogle Scholar
  23. Gill, Jeff, Hrsg. 2004. Special issue on Bayesian methods. Political Analysis 12(4): 323–443.Google Scholar
  24. Goldstein, Joshua S., und John R. Freeman. 1990. Three-way street: Strategic reciprocity in world politics. Chicago: University of Chicago Press.Google Scholar
  25. Greene, William. 2008. Econometric analysis. Upper Saddle River: Prentice Hall.Google Scholar
  26. Hacohen, Malachi Haim. 2000. Karl Popper – the formative years 1902–1945. Politics and philosophy in interwar Vienna. Cambridge: Cambridge University Press.Google Scholar
  27. Heckman, James. 1979. Sample selection bias as a specification error. Econometrica 47(1): 153–161.CrossRefGoogle Scholar
  28. Hoff, Peter D., und Michael D. Ward. 2004. Modeling dependencies in international relations networks. Political Analysis 12(2): 160–175.CrossRefGoogle Scholar
  29. Holland, Paul W. 1986. Statistics and causal inference. Journal of the American Statistical Association 81(396): 945–960.CrossRefGoogle Scholar
  30. Hug, Simon. 2013. Qualitative comparative analysis: How inductive use and measurement error lead to problematic inference. Political Analysis 21(2): 252–265.CrossRefGoogle Scholar
  31. Imai, Kosuke, Luke Keele, Dustin Tingley, und Teppei Yamamoto. 2011. Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review 105(4): 765–789.CrossRefGoogle Scholar
  32. Imbens, Guido W., und Thomas Lemieux. 2008. Regression discontinuity designs: A guide to practice. Journal of Econometrics 142(2): 615–635.CrossRefGoogle Scholar
  33. Jensen, Nathan, und Mi. Jeon Shing. 2014. Globalization and domestic trade policy preferences: Reciprocity and mass support for agriculture subsidies. International Interaction 40(3): 305–324.CrossRefGoogle Scholar
  34. Jensen, Nathan, Bumba Mukherjee, und William Bernhard. 2014. Introduction: Survey and survey experimental work in IPE. International Interaction 40(3): 287–304.CrossRefGoogle Scholar
  35. Kastellec, Jonathan P., und Eduardo L. Leoni. 2007. Using graphs instead of tables in political science. Perspectives on Politics 5(4): 755–771.CrossRefGoogle Scholar
  36. Kern, Holger, und Jens Hainmüller. 2009. Opium for the masses: How foreign media can stabilize authoritarian regimes. Political Analysis 17(4): 377–399.CrossRefGoogle Scholar
  37. King, Gary. 1989. Unifying political methodology: The likelihood theory of statistical inference. 1. Aufl. Cambridge: Cambridge University Press.Google Scholar
  38. King, Gary, Robert O. Keohane, und Sidney Verba. 1994. Designing social inquiry: Scientific inference in qualitative research. Princeton: Princeton University Press.Google Scholar
  39. King, Gary, Michael Tomz, und Jason Wittenberg. 2000. Making the most of statistical analyses: Improving interpretation and presentation. American Journal of Political Science 44(2): 341–355.CrossRefGoogle Scholar
  40. Leblang, David, und Bumba Mukherjee. 2004. Presidential elections and the stock market: Comparing Markov-switching and fractionally integrated GARCH models of volatility. Political Analysis 12(3): 296–322.CrossRefGoogle Scholar
  41. Leetaru, Kalev, und Philip A. Schrodt. 2013. GDELT: Global Data on Events, Location and Tone. Paper präsentiert an der ISA-Konferenz. San Francisco April 2013.Google Scholar
  42. Lewis, Jeffrey B., und Kenneth A. Schultz. 2003. Revealing preferences: Empirical estimation of a crisis bargaining game with incomplete information. Political Analysis 11(4): 345–367.CrossRefGoogle Scholar
  43. Lieberson, Stanley. 1991. Small Ns and big conclusions: An examination of the reasoning in comparative studies based on a small number of cases. Social Forces 70:307–320.CrossRefGoogle Scholar
  44. McDermott, Rose, Dominic D. P. Johnson, Jonathan Cowden, und Stephen Rosen. 2007. Testosterone and aggression in a simulated crisis game. Annals of the American Academy of Political and Social Sciences 614:15–33.CrossRefGoogle Scholar
  45. McDermott, Rose, Chris Dawes, Elizabeth Prom-Wormley, Lindon Eaves, und Peter K. Hatemi. 2013. MAOA and aggression: A gene-environment interaction in two populations. Journal of Conflict Resolution 57(6): 1043.CrossRefGoogle Scholar
  46. Morgan, Stephen L., und Christopher Winship. 2007. Counterfactuals and causal inference: Methods and principles for social research. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  47. Morton, Rebecca. 1999. Methods and models: A guide to the empirical analysis of formal models in political science. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  48. Morton, Rebecca, und Kenneth Williams. 2010. Experimental political science and the study of causality. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  49. Mutz, Diana. 2011. Population-based survey experiments. Princeton: Princeton University Press.CrossRefGoogle Scholar
  50. Nathaniel, Beck, und Jonathan Katz. 2001. Throwing out the baby with the bath water: A comment on Green, Kim, and Yoon. International Organization 55(2): 487–498.CrossRefGoogle Scholar
  51. Neyman, Jerzy. 1923 [1990]. On the Application of Probability Theory to Agricultural Experiments. Essay on Principles. Section 9. Statistical Science 5(4): 465–472. Übersetzt durch Dorota M. Dabrowska und Terence P. Speed.Google Scholar
  52. Nooruddin, Irfan. 2002. Modeling selection bias in studies of sanctions efficacy. International Interactions 28(1): 59–75.CrossRefGoogle Scholar
  53. Nordhaus, William D. 2006. Geography and macroeconomics: New data and new findings. Proceedings of the National Academy of Science 103(10): 3510–3517.CrossRefGoogle Scholar
  54. Østby, Gudrun. 2008. Polarization, horizontal inequalities and violent civil conflict. Journal of Peace Research 45(2): 143–162.CrossRefGoogle Scholar
  55. Ostrom, Elinor. 1990. Governing the commons. The evolution of institutions for common action. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  56. Rost, Nicolas, Gerald Schneider, und Johannes Kleibl. 2009. A global risk assessment model for civil wars. Social Science Research 38(4): 921–933.CrossRefGoogle Scholar
  57. Rubin, Donald B. 1974. Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies. Journal of Educational Psychology 66(5): 688–701.Google Scholar
  58. Russett, Bruce M., und John R. Oneal. 2001. Triangulating peace: Democracy, interdependence, and international organizations. New York: W. W. Norton.Google Scholar
  59. Sattler, Thomas, Gabriele Spilker, und Thomas Bernauer. 2014. Does WTO dispute settlement enforce or inform? British Journal of Political Science 44(4): 877–902.CrossRefGoogle Scholar
  60. Schneider, Gerald. 2014. Nothing succeeds like success: The past and future of European political science. Political Science Research and Methods 2(2): 153–161.CrossRefGoogle Scholar
  61. Schneider, Gerald. 2013. Von Makro zu Mikro: Grundlagen und Perspektiven der empirischen Forschung zur politischen Gewalt. Unveröffentlichtes Manuskript, Universität Konstanz.Google Scholar
  62. Schneider, Gerald, und Gabriele Ruoff. 2010. Quantitative Methoden der Internationalen Politik. In Handbuch der Internationalen Politik, Hrsg. Masala Carlo, Sauer Frank und Wilhelm Andreas, 236–244. Wiesbaden: Verlag der Sozialwissenschaften.CrossRefGoogle Scholar
  63. Schneider, Gerald, und Vera E. Troeger. 2006. War and the world economy: Stock market reactions to international conflicts. Journal of Conflict Resolution 50(5): 623–645.CrossRefGoogle Scholar
  64. Schneider, Carsten Q., und Claudius Wagemann. 2012. Set-theoretic methods: A user’s guide for qualitative comparative analysis and fuzzy sets in social science. Cambridge: Cambridge University Press.Google Scholar
  65. Schneider, Gerald, Thomas Widmer, und Dieter Ruloff. 1993. Personality, unilateralism, or bullying: What caused the end of the cold war? International Interactions 18(4): 323–342.CrossRefGoogle Scholar
  66. Schneider, Gerald, Daniel Finke, und Stefanie Bailer. 2010. Bargaining power in the European union: An evaluation of competing game-theoretic models. Political Studies 58(1): 85–103.CrossRefGoogle Scholar
  67. Schrodt, Philip A. 2014. Seven deadly sins of contemporary quantitative political analysis. Journal of Peace Research 51(2): 287–300.CrossRefGoogle Scholar
  68. Sekhon, Jasjeet S. 2008. The Neyman-Rubin model of causal inference and estimation via matching methods. In The Oxford handbook of political methodology, Hrsg. Janet M. Box-Steffensmeier, Henry E. Brady und S. Collier, 271–299. New York: Oxford University Press.Google Scholar
  69. Shadish, William R., Thomas D. Cook, und Donald T. Campbell. 2002. Experimental and quasi-experimental designs for generalized causal inference. Belmont: Wadsworth.Google Scholar
  70. Signorino, Curtis S. 1999. Strategic interaction and the statistical analysis of international conflict. American Political Science Review 93(2): 279–297.CrossRefGoogle Scholar
  71. Signorino, Curtis S. 2003. Structure and uncertainty in discrete choice models. Political Analysis 11(4): 316–344.CrossRefGoogle Scholar
  72. Simmons, Beth, und Dan Hopkins. 2005. The constraining power of international treaties: Theory and methods. American Political Science Review 99(4): 623–631.CrossRefGoogle Scholar
  73. Singer, J. David, Bremer Stuart, und Stuckey John. 1972. Capability distribution, uncertainty, and major power war, 1820–1965. In Peace, war, and numbers, Hrsg., Bruce Russett, 1. Aufl., 19–48. Beverly Hills: Sage Publications.Google Scholar
  74. Sovey, Allison J., und Donald P. Green. 2011. Instrumental variables estimation in political science: A readers' guide. American Journal of Political Science 55(1): 188–200.CrossRefGoogle Scholar
  75. Steenbergen, Marco R., und Bradford S. Jones. 2002. Modeling multilevel data structures. American Journal of Political Science 46(2): 218–237.CrossRefGoogle Scholar
  76. Thomas, Höfer, Hildegard Przyrembel, und Silvia Verleger. 2004. New evidence for the theory of the Stork. Paediatric and Perinatal Epidemiology 18(1): 88–92.CrossRefGoogle Scholar
  77. Thomson, Robert, Frans N. Stokman, Christopher H. Achen, und Thomas König. 2006. The European union decides. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  78. Vasquez, John. 1997. The realist paradigm and degenerative versus progressive research programs: An appraisal of neotraditional research on Waltz's balancing proposition. American Political Science Review 91(4): 899–912.CrossRefGoogle Scholar
  79. von Stein, Jana. 2005. Do treaties constrain or screen? Selection bias and treaty compliance. American Political Science Review 99(4): 611–622.CrossRefGoogle Scholar
  80. Waltz, Kenneth J. 1979. Theory of international politics, reading. Mass: Addison-Wesley.Google Scholar
  81. Ward, Michael D., und Kristian Skrede Gledisch. 2008. Spatial regression models. Thousand Oaks: Sage.CrossRefGoogle Scholar
  82. Ward, Michael D., Brian D. Greenhill, und Kristin M. Bakke. 2010. The perils of policy by P-value: Predicting civil conflicts. Journal of Peace Research 47(4): 363–375.CrossRefGoogle Scholar
  83. Western, Bruce. 1996. Causal heterogenity in comparative research: A Bayesian hierarchical modelling approach. American Journal of Political Science 42(4): 1233–1259.CrossRefGoogle Scholar
  84. Wooldrigde, Jeffrey. 2010. Econometric analysis of cross section and panel data. Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  • Constantin Ruhe
    • 1
  • Gerald Schneider
    • 2
  • Gabriele Spilker
    • 3
  1. 1.Fachbereich Politik- und Verwaltungswissenschaft, Zukunftskolleg, Fach 216Universität KonstanzKonstanzDeutschland
  2. 2.Fachbereich Politik- und Verwaltungswissenschaft, Graduate School of Decision Sciences, Fach 86Universität KonstanzKonstanzDeutschland
  3. 3.Fachbereich Politikwissenschaft und Soziologie, Universität SalzburgSalzburgÖsterreich

Personalised recommendations