Zur Methode der agenten-basierten Simulation in der Politikwissenschaft am Beispiel von Meinungsdynamik und Parteienwettstreit

Conference paper
Part of the Jahrbuch für Handlungs- u. Entscheidungstheorie book series (JAHAEN, volume 7)

Zusammenfassung

In agenten-basierten Computersimulationen kann man, wenn sie geeignet visualisiert sind, sehen, wie emergente Phänomene aus lokalen Interaktionen entstehen. Man kann mit Annahmen und Parametern spielen und damit neue Parteistrategien zum Gewinnen von Wahlen ausprobieren, die selbstorganisierte Parteibildung manipulieren oder Revolutionen an kritischen Schwellwerten auslösen. Sie bilden eine spielerische Brücke zwischen Theorie und Realität. In diesem Beitrag wird die Methode der agenten-basierten Computersimulation als allgemeine Methode zur Untersuchung formaler Modelle im Hinblick auf politikwissenschaftliche Fragestellungen vorgestellt und an ausgewählten Beispielen erläutert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Axelrod, Robert,1981: The emergence of cooperation among egoists. American Political Science Review 75, 306–318.CrossRefGoogle Scholar
  2. Axelrod, Robert,1986: An evolutionary approach to norms. American Political Science Review 80, 1095–1111.CrossRefGoogle Scholar
  3. Axelrod, Robert,1997: The dissemination of culture. Journal of Conflict Resolution 41, 203–226.CrossRefGoogle Scholar
  4. Barnes, Nick,2010: Publish your computer code: it is good enough. Nature 467, 753.Google Scholar
  5. Bendor, Jonathan, Daniel Diermeier, David A. Siegel und Michael M. Ting, 2011: A Behavioral Theory of Elections. Princeton: Princeton University Press.Google Scholar
  6. Castellano, Claudio, Santo Fortunato und Vittorio Loreto,2009: Statistical physics of social dynamics. Review of Modern Physics 81, 591–646.CrossRefGoogle Scholar
  7. Cederman, Lars-Erik,2003: Modeling the size of wars: From billiard balls to sandpiles. American Political Science Review 97, 135–150.CrossRefGoogle Scholar
  8. Clough, Emily,2007: Strategic voting under conditions of uncertainty: A reevaluation of Duverger’s law. British Journal of Political Science 37, 313–332.CrossRefGoogle Scholar
  9. Couzin, Iain D., Jens Krause, Richard James, Graeme D. Ruxton und Nigel R. Franks, 2002: Collective memory and spatial sorting in animal groups. Journal of Theoretical Biology 218, 1–11.CrossRefGoogle Scholar
  10. Deffuant, Guillaume, David Neau, Frederic Amblard und Gérard Weisbuch,2000: Mixing beliefs among interacting agents. Advances in Complex Systems 3, 87–98.CrossRefGoogle Scholar
  11. Deffuant, Guillaume, David Neau, Frederic Amblard und Gérard Weisbuch,2002: How Can Extremism Prevail? A Study Based on the Relative Agreement Interaction Model. Journal of Artificial Societies and Social Simulation 5, 1.Google Scholar
  12. DeGroot, Morris H., 1974: Reaching a consensus. Journal of the American Statistical Association 69, 118–121.CrossRefGoogle Scholar
  13. Downs, Anthony,1957: An Economic Theory of Democracy. New York: Harper & Row.Google Scholar
  14. Epstein, Joshua M., 2002: Modeling civil violence: An agent-based computational approach. Proceedings of the National Academy of Sciences of the United States of America 99, 7243–7250.Google Scholar
  15. Fowler, James H. und Oleg Smirnov, 2007: Mandates, parties, and voters: how elections shape the future. Philadelphia: Temple University Press.Google Scholar
  16. Friedkin, Noah E. und Eugene. C. Johnsen, 1990: Social influence and opinions. The Journal of Mathematical Sociology 15, 193–206.CrossRefGoogle Scholar
  17. Groeber, P., Jan Lorenz und F. Schweitzer,2011: A microfoundation of social influence in models of opinion formation, submitted to Journal of Mathematical Sociology.Google Scholar
  18. Hegselmann, Rainer und Ulrich Krause,2002: Opinion dynamics and bounded confidence, models, analysis and simulation. Journal of Artificial Societies and Social Simulation 5, 2.Google Scholar
  19. Huckfeldt, Robert, Paul E. Johnson und John Sprague, 2004: Political Disagreement: The Survival of Diverse Opinions within Communication Network. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Kollman, Ken, John. H. Miller und Scott E. Page, 1992: Adaptive parties in spatial elections. American Political Science Review 86, 929–937.CrossRefGoogle Scholar
  21. Kollman, Ken, John. H. Miller und Scott E. Page, 1997: Political institutions and sorting in a tiebout model. American Economic Review 87, 977–992.Google Scholar
  22. Laver, Michael,2005: Policy and the dynamics of political competition. American Political Science Review 99, 263–281.CrossRefGoogle Scholar
  23. Laver, Michael und Michel Schilperoord,2007: Spatial models of political competition with endogenous political parties. Philosophical Transactions of the Royal Society B: Biological Sciences 362, 1711–1721.CrossRefGoogle Scholar
  24. Liggett, Thomas M., 1985: Interacting Particle Systems. New York: Springer.CrossRefGoogle Scholar
  25. Lorenz, Jan,2008: Fostering Consensus in Multidimensional Continuous Opinion Dynamics under bounded Confidence, S. 321–334, in: Dirk Helbing (Hrsg.), Managing Complexity: Insights, Concepts, Applications, Understanding Complex Systems. New York: Springer.Google Scholar
  26. Lorenz, Jan,2010: Heterogeneous bounds of confidence: Meet, discuss and find consensus!. Complexity 15, 43–52.Google Scholar
  27. Lustick, Ian S., Dan Miodownik und Roy J. Eidelson, 2004: Secessionism in multicultural states: Does sharing power prevent or encourage it? American Political Science Review 98, 209–229.Google Scholar
  28. Macy, Michael W. und Robert Willer, 2002: From factors to actors: Computational sociology and agent-based modeling. Annual Review of Sociology 28, 143–166.CrossRefGoogle Scholar
  29. Mäs, Michael, Andreas Flache und Dirk Helbing,2010: Individualization as driving force of clustering phenomena in humans. PLoS Comput Biol 6, e1000959.CrossRefGoogle Scholar
  30. Metz, Thomas,2011: A multilevel model of party identification, in: 10th Dutch-Flemish Politicologenetmaal, Session 12: Simulations of political phenomena, June 9/10, Amsterdam.Google Scholar
  31. Myerson, Roger B., 1991: Game Theory: Analysis of Conflict. Cambridge, Mass.: Harvard University Press.Google Scholar
  32. Pineda, M., R. Toral, und E. Hernandez-Garcia,2009: Noisy continuous-opinion dynamics. Journal of Statistical Mechanics: Theory and Experiment, p08001.Google Scholar
  33. Reynolds, Craig. W., 1987: Flocks, herds and schools: A distributed behavioral model, S. 25–34, in: Proceedings of the 14th annual conference on Computer graphicsand interactive techniques, SIGGRAPH ’87, New York, NY.Google Scholar
  34. Salzarulo, Laurent,2006: A continuous opinion dynamics model based on the principle of meta-contrast. Journal of Artificial Societies and Social Simulation 9, 13.Google Scholar
  35. Shikano, Susumu,2009: Simulating party competition and vote decision under mixed member electoral systems. AUCO Czech Economic Review 3, 270–292.Google Scholar
  36. Urbig, Diemo,2003: Attitude dynamics with limited verbalisation capabilities. Journal of Artificial Societies and Social Simulation 6, 2.Google Scholar

Copyright information

© VS Verlag für Sozialwissenschaften | Springer Fachmedien Wiesbaden 2012

Authors and Affiliations

  1. 1.Institut für SozialwissenschaftenUniversität OldenburgOldenburgDeutschland

Personalised recommendations