Ethische Fragen bei Brain-Computer Interfaces und anderen Neurotechnologien

  • Philipp KellmeyerEmail author


Auf den Menschen bezogen sind unter Neurotechnologien im weitesten Sinn alle jene Geräte und Forschungsmethoden zu verstehen, bei denen das menschliche Nervensystem, insbesondere das Gehirn, im Zentrum der Beobachtung steht oder Objekt der technischen Interaktion ist. Unter diese weit gefasste Definition fallen, neben den verbreiteten Geräten zur Bildgebung des Gehirns (z. B. mittels Kernspintomographie, MRT), den Methoden zur Messung der elektrischen Gehirnaktivität mittels Elektroenzephalographie (EEG) oder Geräten zur (magneto-)elektrischen Stimulation des Gehirns (z. B. transkranielle Magnetstimulation, TMS), letztlich aber auch Methoden zur feingeweblichen Untersuchung von Gehirnzellen und zellulären Funktionen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burget, Felix/Fiederer, Lukas D. J./Kuhner, Daniel u. a.: Acting thoughts. Towards a mobile robotic service assistant for users with limited communication skills. In: Institute of Electrical and Electronics Engineers (IEEE) 2017. European Conference on Mobile Robots (2017), 1–6.
  2. Croskerry, Pat/Singhal, Geeta/Mamede, Sílvia: Cognitive debiasing 2. Impediments to and strategies for change. In: BMJ Quality & Safety 22 (2013) Suppl 2: ii65–ii72, 1–8. Scholar
  3. Eaton, Margret L./Illes, Judy: Commercializing cognitive neurotechnology—the ethical terrain. In: Nature Biotechnology 25/4 (2007), 393–397. Scholar
  4. Evers, Kathinka/Salles, Arleen/Farisco, Michele: Theoretical Framing of Neuroethics. The Need for a Conceptual Approach. In: Eric Racine/John Aspler (Hg.): Debates About Neuroethics. Cham 2017, 89–107. Scholar
  5. Fuchs, Thomas: Das Gehirn – ein Beziehungsorgan: Eine phänomenologisch-ökologische Konzeption [2007]. Stuttgart 52016.Google Scholar
  6. Gallagher, Shaun/Allen, Micah: Active inference, enactivism and the hermeneutics of social cognition. In: Synthese S. I.: Predictive Brains (2016), 1–22. Scholar
  7. Gilbert, Frederic: The burden of normality. From ›chronically ill‹ to ›symptom free‹. New ethical challenges for deep brain stimulation postoperative treatment. In: Journal of Medical Ethics 38/7 (2012), 408–412. Scholar
  8. Gilbert, Frederic: Deep Brain Stimulation for Treatment Resistant Depression: Postoperative Feelings of Self-Estrangement, Suicide Attempt and Impulsive–Aggressive Behaviours. In: Neuroethics 6 (2013), 473–481. Scholar
  9. Goering, Sara/Klein, Eran/Dougherty, Darin D. u. a.: Staying in the Loop: Relational Agency and Identity in Next-Generation DBS for Psychiatry. In: American Journal of Bioethics (AJOB) Neuroscience 8/2 (2017), 59–70. Scholar
  10. Haan, Sanneke de/Rietveld, Erik/Stokhof, Martin u. a.: Effects of Deep Brain Stimulation on the Lived Experience of Obsessive-Compulsive Disorder Patients: In-Depth Interviews with 18 Patients. In: Public Library of Science (PLOS) ONE (2015), 1–29. Scholar
  11. Halperin, Daniel/Heydt-Benjamin, Thomas S./Ransford, Benjamin u. a.: Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-Power Defenses. In: IEEE Symposium on Security and Privacy (2008), 129–142.
  12. Ienca, Marcello/Andorno, Roberto: Towards new human rights in the age of neuroscience and neurotechnology. In: Life Sciences, Society and Policy 13/5 (2017), 1–27.
  13. Ienca, Marcello/Jotterand, Fabrice/Elger, Bernice S.: From Healthcare to Warfare and Reverse: How Should We Regulate Dual-Use Neurotechnology? In: Neuron 97/2 (2018), 269–274. Scholar
  14. Illes, Judy: Neuroethics. Anticipating the future. Oxford University Press 2017.Google Scholar
  15. Kellmeyer, Philipp/Cochrane, Thomas/Müller, Oliver u. a.: The Effects of Closed-Loop Medical Devices on the Autonomy and Accountability of Persons and Systems. In: Cambridge Quarterly of Healthcare Ethics 25/4 (2016), 623–633.CrossRefGoogle Scholar
  16. Kreitmair, Karola V./Cho, Mildred K./Magnus, David C.: Consent and engagement, security, and authentic living using wearable and mobile health technology. In: Nature Biotechnology 35 (2017), 617–620. Scholar
  17. Miranda, Robbin A./Casebeer, William D./Hein, Amy M. u. a.: DARPA-funded efforts in the development of novel brain–computer interface technologies. In: Journal of Neuroscience Methods 244 (2015), 52–67. Scholar
  18. Neely, Ryan M./Piech, David K./Santacruz, Samantha R. u. a.: Recent advances in neural dust. Towards a neural interface platform. In: Current Opinion in Neurobiology 50 (2018), 64–71. Scholar
  19. Parens, Eric: Shaping Our Selves. On Technology, Flourishing, and a Habit of Thinking. Oxford/New York 2014.Google Scholar
  20. Reardon, Sara: The Pentagon’s gamble on brain implants, bionic limbs and combat exoskeletons. In: Nature 522/7555 (2015), 142–144. Scholar
  21. Wexler, Anna: Who Uses Direct-to-Consumer Brain Stimulation Products, and Why? A Study of Home Users of tDCS Devices. In: Journal of Cognitive Enhancment (2017), 1–21. Scholar
  22. Yuste, Rafael/Goering, Sara/Agüera y Arcas, B. u. a.: Four ethical priorities for neurotechnologies and AI. In: Nature 551/7679 (2017), 159–163. Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.FreiburgDeutschland

Personalised recommendations