Advertisement

Symplectic Twistors and Geometric Quantization of Strings

  • A. D. Popov
  • A. G. Sergeev
Part of the Aspects of Mathematics book series (ASMA, volume 25)

Abstract

We present the geometric quantization scheme for the bosonic string theory in twistor terms. Starting from the loop space of a Lie group we define a symplectic twistor bundle over the loop space and reformulate the geometric quantization problem in terms of this bundle. For the standard bosonic string we recover in this way the well known critical dimension condition.

Keywords

Symplectic Structure Twistor Space Loop Space Bosonic String Geometric Quantization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bowick M.J., Rajeev S.G. The holomorphic geometry of closed bosonic string theory and Dif f(S 1)/ S 1, Nucl. Phys. B293 (1987), 348–384;MathSciNetCrossRefGoogle Scholar
  2. [1]a
    Bowick M.J., Rajeev S.G. Anomalies as curvature in complex geometry, Nucl. Phys. B296 (1988), 1007–1033.MathSciNetCrossRefGoogle Scholar
  3. [2]
    Pilch K., Warner N.P. Holomorphic structure of superstring vacua, Class. Quantum Gray. 4 (1987), 1183–1192;MathSciNetzbMATHCrossRefGoogle Scholar
  4. [2]a
    Mickelsson J. String quantization on group manifolds and the holomorphic geometry of Dif f(S 1)/ S 1, Commun. Math. Phys. 112 (1987), 653–661;MathSciNetzbMATHCrossRefGoogle Scholar
  5. [2]b
    Kirillov A.A., Juriev D.V. Kähler geometry of the infinite-dimensional homogeneous space M = Dif f(S 1)/ Rot (S 1)Nonlinear gravitons and curved twistor theory, Funkc. anal. i ego pril. 21 (1987), no. 4, 35–46 (Russian).Google Scholar
  6. [3]
    Penrose R. Nonlinear gravitons and curved twistor theory, Gen. Relat. Gray. 7 (1976), 31–52.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [4]
    Hitchin N.J., Karlhede A., Lindstrøm U., Roček M. Hyperkahler metrics and supersymmetry, Commun. Math. Phys. 108 (1987), 535–589zbMATHCrossRefGoogle Scholar
  8. [4]a
    Salamon S., Quaternionic Kähler manifolds, Invent. math. 67 (1982), 143–171;MathSciNetzbMATHCrossRefGoogle Scholar
  9. [4]b
    Mamone Capria M., Salamon S. Yang-Mills fields on quaternionic spaces, Nonlinearity 1 (1988), 517–530;MathSciNetzbMATHCrossRefGoogle Scholar
  10. [4]c
    Nitta T. Vector bundles over quaternionic Kähler manifolds, Tohôku Math. J. 40 (1988), 425–440;MathSciNetzbMATHCrossRefGoogle Scholar
  11. [4]d
    Topiwala P.A new proof of the existence of Kähler -Einstein metrics on K3, Invent. math. 89 (1987), 425–454.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [5]
    Atiyah M.F., Hitchin N.J., Singer I.M. Self-duality on four-dimensional Riemannian geometry, Proc. Roy. Soc. London 362 (1978), 425–461;MathSciNetzbMATHCrossRefGoogle Scholar
  13. [5]a
    Bryant R. Lie groups and twistor spaces, Duke Math. J. 52 (1985), 223–261;MathSciNetzbMATHCrossRefGoogle Scholar
  14. [5]b
    Burstall F.E., Rawnsley J.H. Twistor theory for Riemannian symmetric spaces with applications to harmonic maps of Riemann surfaces, Springer Lect. Notes Math. 1424, Berlin-Heidelberg-New York, 1990;zbMATHGoogle Scholar
  15. [5]c
    O’Brian N.R., Rawnsley J.H. Twistor spaces, Ann. Glob. Anal. Geom. 3 (1985), 29–58.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [6]
    Vaisman I. Symplectic twistor spaces, J. Geom. Phys. 3 (1986), 507–524.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [7]
    Kirillov A.A. Geometric quantization, Itogi nauki i tehn. Sovr. probl. matem. Fund. napray. vol. 4, VINITI Moscow 1985, 141–178 (Russian);MathSciNetGoogle Scholar
  18. [7]a
    Sniatycki J. Geometric quantization and quantum mechanics, Springer, New York, 1980;zbMATHCrossRefGoogle Scholar
  19. [7]b
    Woodhouse N.J.M. Geometric quantization, 2nd ed., Clarendon Press, Oxford, 1992.zbMATHGoogle Scholar
  20. [8]
    Pressley A., Segal G.Loop groups, Clarendon Press, Oxford, 1986.zbMATHGoogle Scholar
  21. [9]
    Atiyah M.F. Geometry of Yang-Mills fields, Scuola norm. super., Pisa, 1979.zbMATHGoogle Scholar
  22. [10]
    Segal G. Unitary representations of some infinite dimensional groups, Commun. Math. Phys. 80 (1981), 301–342.zbMATHCrossRefGoogle Scholar
  23. [11]
    Hong D.K., Rajeev S.G. Universal Teichmüller space and Dif f(S 1)/S 1, Commun. Math. Phys. 135 (1991), 401–411;MathSciNetzbMATHCrossRefGoogle Scholar
  24. [11]a
    Nag S., Verjovsky A.Dif f(S 1) and the Teichmüller spaces, Commun. Math. Phys. 130 (1990), 123–128.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [12]
    Lehto O. Univalent functions and Teichmüller spaces, Springer, Berlin-Heidelberg-New York, 1986.Google Scholar
  26. [13]
    Berezin F.A. Method of second quantization, Nauka, Moscow 1965 (Russian).Google Scholar
  27. [14]
    Neretin Ju.A. Representations of Virasoro and affine algebras, Itogi nauki i tehn. Sovr. probl. matem. Fund. napray. vol. 22, VINITI, Moscow 1983, 163–224 (Russian).Google Scholar
  28. [15]
    Feigin B.L. Semi-infinite cohomologies of Kac-Moody and Virasoro Lie algebras, Uspehi mat. nauk 39, 2 (1984), 195–196 (Russian);MathSciNetzbMATHGoogle Scholar
  29. [15]a
    Frenkel I.B., Garland H., Zuckerman G.J. Semiinfinite cohomology and string theory, Proc. Nat. Acad. Sci. USA 83 (1986), 8442–8446.MathSciNetzbMATHCrossRefGoogle Scholar
  30. [16]
    Goddard P., Olive D. Kac—Moody and Virasoro algebras in relation to quantum physics, Int. J. Mod. Phys. A1 (1986), 303–414.MathSciNetCrossRefGoogle Scholar
  31. [17]
    Gepner D., Witten E. String theory on group manifolds, Nucl. Phys. B278 (1986), 493–549.MathSciNetCrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1994

Authors and Affiliations

  • A. D. Popov
  • A. G. Sergeev

There are no affiliations available

Personalised recommendations