Advertisement

On the Brauer Group of Real Algebraic Surfaces

  • Viacheslav V. Nikulin
Part of the Aspects of Mathematics book series (ASMA, volume 25)

Abstract

In the paper of R. Sujatha and the author [N-S], the Brauer group of a real Enriques surface was studied. Here we continue the study of Brauer group with the remark that most of the results of these paper generally valid for an arbitrary smooth projective real algebraic surface.

Keywords

Exact Sequence Spectral Sequence Algebraic Surface Equivariant Cohomology Double Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    I. R. Shafarevich (ed.), Algebraic surfaces, Proc. Steklov Math. Inst. vol. 75, 1965; English transl. by A.M.S. 1969.Google Scholar
  2. [Bre]
    G. E. Bredon, Introduction to compact transformation groups, Academic Press, New York and London, 1972.zbMATHGoogle Scholar
  3. [Bro]
    K. S. Brown, Cohomology of groups, Springer, 1982.zbMATHCrossRefGoogle Scholar
  4. [C]
    D. A. Cox, The étale homotopy type of varieties over ℝ, Proc. Amer. Math. Soc. vol. 76, no. 1 (1979).Google Scholar
  5. [C-D]
    F. R. Cossec and I. Dolgachev, Enriques surfaces.I, Progress in Mathematics, vol. 76, Birkhäuser, 1989.zbMATHCrossRefGoogle Scholar
  6. [CT P]
    J.-L. Colliot-Thélène and R. Parimala, Real components of algebraic varieties and étale cohomology, Invent. math. 101 (1990), 81–99.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [Go]
    R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.zbMATHGoogle Scholar
  8. [Gr 1]
    A. Grothendieck, Sur quelques points d’algebre homologique, Tohoku Mathem. J. 9(1957), 119–221.MathSciNetzbMATHGoogle Scholar
  9. [Gr2]
    A. Grothendieck, Le groupe de Brauer, Dix Exposes sur la Cohomologie des Schemas, North-Holland, Amsterdam, 1968, 46–188.Google Scholar
  10. [G-H]
    P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley and sons, New York, 1978.zbMATHGoogle Scholar
  11. [H]
    V. M. Harlamov, Topological types of nonsingular surfaces of degree 4 in RP3, Funktcional. Anal. i Prilozhen. 10(1976), 55–68; English transl. in Functional Anal. Appl.MathSciNetGoogle Scholar
  12. [Kr]
    V. A. Krasnov, Harnack-Thom inequalities for mappings of real algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 47(1983), 268–297;MathSciNetGoogle Scholar
  13. [Kr]a
    V. A. Krasnov, Harnack-Thom inequalities for mappings of real algebraic varieties, English transl. in Math. USSR Izv. 22(1984), 247–275.zbMATHCrossRefGoogle Scholar
  14. [Ku]
    Vik. S. Kulikov, Degenerations of K3-surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 41(1977), 1008–1042;MathSciNetzbMATHGoogle Scholar
  15. [Ku]
    Vik. S. Kulikov, Degenerations of K3-surfaces and Enriques surfaces, English transl. in Math. USSR Izv. 11(1978), 957–989.CrossRefGoogle Scholar
  16. [Ma]
    Y. I. Manin, Le groupe de Brauer-Grothendieck en Géometrie diophantienne, Actes du Congres Intern. Math. Nice (1970), vol. 1, Gauthier-Villars, Paris, 1971, 401–411.Google Scholar
  17. [Mi]
    J. Milne, Etale cohomology, Princeton Univ. Press, 1980.zbMATHGoogle Scholar
  18. [N1]
    V. V. Nikulin, Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43(1979), 111–177;MathSciNetzbMATHGoogle Scholar
  19. [N1]
    V. V. Nikulin, Integral symmetric bilinear forms and some of their geometric applications, English transl. in Math. USSR Izv. 14(1980), 103–167.zbMATHCrossRefGoogle Scholar
  20. [N2]
    V. V. Nikulin, Involutions of integral quadratic forms and their application to real algebraic geometry, Izv. Akad. Nauk SSSR Ser. Mat. 47(1983), 109–188;English transl. in Math. USSR Izv. 22(1984).MathSciNetGoogle Scholar
  21. [N3]
    V. V. Nikulin, Lectures on the Brauer group of real algebraic surfaces, Preprint of University of Notre Dame, College of science, Dept. of Math. # 179 (January, 1992).Google Scholar
  22. [N4]
    V. V. Nikulin, On the topological classification of real Enriques surfaces.I, Universität Bielefeld, Sonderforschungsbereich 343, Diskrete Strukturen in der Mathematik (1992) (to appear).Google Scholar
  23. [N-S]
    V. V. Nikulin and R. Sujatha, On Brauer groups of real Enriques surfaces, Preprint IHES /M/91/33 (1991); To appear in J. reine angew. Math.Google Scholar
  24. [PŠ-Š]
    I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, A Torelli theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR Ser. Mat. 35(1971), 530–572; English transl. in Math. USSR Izv. 5(1971).MathSciNetGoogle Scholar
  25. [R]
    V. A. Rokhlin, Congruences modulo 16 in Hilbert’s sixteen problem, Funktcional. Anal. i Prilozhen 4(1972), no. 4, 58–64;Google Scholar
  26. [R]
    V. A. Rokhlin, Congruences modulo 16 in Hilbert’s sixteen problem, English transl. in Funct. Anal. Appl. 6(1972), 301–306.CrossRefGoogle Scholar
  27. [Sp]
    E. H. Spanier, Algebraic Topology, McGraw-Hill Book Company, 1966.zbMATHGoogle Scholar
  28. [Su]
    R. Sujatha, Witt groups of real projective surfaces, Math. Ann. 28(1990), 89–101.MathSciNetCrossRefGoogle Scholar
  29. [W]
    E. Witt, Zerlegung reeler algebraischer Funktionen in Quadrate, Schiefkorper fber reellem Funktionenkörper, J. fur die reine und angew Math. 171(1934), 4–11.Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1994

Authors and Affiliations

  • Viacheslav V. Nikulin

There are no affiliations available

Personalised recommendations