Simulation of Dioxygen Free Radical Reactions: Their Importance in the Initiation of Lipid Peroxidation

  • P. Moniz-Barreto
  • D. A. Fell


Dioxygen is an essential compound for most living organisms, the formation of reactive dioxygen intermediates appears to be commonplace in aerobically metabolizing cells and the free radicals that are produced are damaging to biological materials. The properties of dioxygen that are relevant to its role in living systems are:
  1. 1.

    it is a powerful oxidising agent (i. e. it has high electron affinity);

  2. 2.

    it has two unpaired electrons, and

  3. 3.

    it has low reactivity.



Lipid Peroxidation Unpaired Electron Peroxidation Process Lipid Peroxidation Process High Electron Affinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Halliwell, B. and Gutteridge, M. C. (1984). Biochem. J. 219, 1–14.Google Scholar
  2. [2]
    Bland, J. (1976). J. Chem. Edu. 53, 274–279.CrossRefGoogle Scholar
  3. [3]
    Wilson, R. L. (1985). Ciba Found. Symp. 65.Google Scholar
  4. [4]
    Pryor, W. A., ed. (1976). Free Radicals in Biology. Academic Press, New York.Google Scholar
  5. [5]
    Fridivich, I. (1977). in Biochemical and Medical Aspects of Active Oxygen (Hayaschi, O. and Asada, K., eds.), pp. 3–12. University Park Press, Tokyo.Google Scholar
  6. [6]
    Pryor, W. A. (1978). Photochem. Photobiol. 28, 787–801.CrossRefGoogle Scholar
  7. [7]
    Halliwell, B. and Gutteridge, J. M. C. (1986). Arch. Biochem. Biophys. 246, 501–514.CrossRefGoogle Scholar
  8. [8]
    Cotgreave, I. A., Moldeus, P. and Orrenius, S. (1988). Ann. Rev. Pharmacol. Toxicol. 28, 189–212.Google Scholar
  9. [9]
    Halliwell, B. and Gutteridge, J. (1989). Free radicals in Biology and Medicine, chapter Oxygen is poisonius — an intriduction to oxygen toxicity and free radicals, pp. 1–21. Clarendon press, Oxford, 2nd edition.Google Scholar
  10. [10]
    Sun, Y. (1990). Free Radical Biol. & Med. 8, 583–599.CrossRefGoogle Scholar
  11. [11]
    Dormandy, T. L. (1988). Lancet, 1126–1128.Google Scholar
  12. [12]
    Tappel, A. L., Tappel, A. A. and Fraga, C. G. (1989). Free radical Biol. & Med. 7, 361–368.CrossRefGoogle Scholar
  13. [13]
    Babbs, C. F. and Steiner, M. G. (1990). Free Radical Biol. &. Med. 8, 471–485CrossRefGoogle Scholar
  14. [14]
    Bunker, D., Garret, B., Kleindienst, T. and Long III, G. (1974). Combustion and Flame 23, 373–379.CrossRefGoogle Scholar
  15. [15]
    Gillespie, D. (1976). J. Comp. Phys. 22, 403–434.MathSciNetCrossRefGoogle Scholar
  16. [16]
    Gillespie, D. (1977). J. Phys. Chem. 81, 2340–2361.CrossRefGoogle Scholar
  17. [17]
    Koppenol, W. H. and Butler, J. (1977). FEBS Letters 83, 1–6.CrossRefGoogle Scholar
  18. [18]
    Kappus, H. (1985). Oxidative Stress, chapter Lipid peroxidation: Mechanisms, analysis, enzymology and biological relevance, pp. 273–309. Academic press, London, 1st edition.Google Scholar
  19. [19]
    Dorfman, L. M. and Adams, G. E. (1973). Reactivity of the Hydroxyl Radical in Aqueous Solutions. Technical Report NRSDS-NBS-46, National Bureau of Standards, Government Printing Office, Washington.Google Scholar
  20. [20]
    Singh, A. (1978). Photochem. Photobiol. 28, 429–433.CrossRefGoogle Scholar
  21. [21]
    Bielsky, B., Cabelli, D., Arudi, R. and Ross, A. (1985). J. Phys. Chem. Ref. Data 14, 1041–1099.CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden 1996

Authors and Affiliations

  • P. Moniz-Barreto
  • D. A. Fell

There are no affiliations available

Personalised recommendations