Advertisement

Future Directions for IPF Research

  • J. Matt Craig
  • Neil R. Aggarwal
  • James P. KileyEmail author
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease defined by usual interstitial pneumonia of unknown etiology. Despite advancements derived from decades of biomedical research, including the recent advent of nintedanib and pirfenidone therapies, the prognosis for patients diagnosed with IPF remains poor. Here, we seek to identify current gaps in our understanding of the pathogenesis of IPF and highlight challenges that remain for the translation of basic IPF research into clinical diagnostics and therapeutics. Through a discussion of cutting-edge discoveries and outstanding questions in the areas of epithelial injury and repair, myofibroblast activation and extracellular matrix function, immune activation, gene-environment interactions, preclinical model development, and the status of recent clinical investigations, we seek to set the stage for the next phase of impactful IPF research.

Keywords

Idiopathic pulmonary fibrosis Clinical trials Pathogenesis Preclinical models Genetics Biomarkers Extracellular matrix Inflammation Immunity Alveolar injury Epithelial repair 

References

  1. 1.
    Olson AL, Swigris JJ, Lezotte DC, Norris JM, Wilson CG, Brown KK. Mortality from pulmonary fibrosis increased in the United States from 1992 to 2003. Am J Respir Crit Care Med. 2007;176(3):277–84.  https://doi.org/10.1164/rccm.200701-044OC.CrossRefPubMedGoogle Scholar
  2. 2.
    Raghu G, Weycker D, Edelsberg J, Bradford WZ, Oster G. Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2006;174(7):810–6.  https://doi.org/10.1164/rccm.200602-163OC.CrossRefPubMedGoogle Scholar
  3. 3.
    Wolters PJ, Collard HR, Jones KD. Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol. 2014;9:157–79.  https://doi.org/10.1146/annurev-pathol-012513-104706.CrossRefPubMedGoogle Scholar
  4. 4.
    Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE Jr, Kondoh Y, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schunemann HJ, Fibrosis AEJACoIP. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6):788–824.  https://doi.org/10.1164/rccm.2009-040GL.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Misumi S, Lynch DA. Idiopathic pulmonary fibrosis/usual interstitial pneumonia: imaging diagnosis, spectrum of abnormalities, and temporal progression. Proc Am Thorac Soc. 2006;3(4):307–14.  https://doi.org/10.1513/pats.200602-018TK.CrossRefPubMedGoogle Scholar
  6. 6.
    Smith M, Dalurzo M, Panse P, Parish J, Leslie K. Usual interstitial pneumonia-pattern fibrosis in surgical lung biopsies. Clinical, radiological and histopathological clues to aetiology. J Clin Pathol. 2013;66(10):896–903.  https://doi.org/10.1136/jclinpath-2013-201442.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, Behr J, Brozek JL, Collard HR, Cunningham W, Homma S, Johkoh T, Martinez FJ, Myers J, Protzko SL, Richeldi L, Rind D, Selman M, Theodore A, Wells AU, Hoogsteden H, Schunemann HJ, American Thoracic S, European Respiratory S, Japanese Respiratory S, Latin American Thoracic A. An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am J Respir Crit Care Med. 2015;192(2):e3–19.  https://doi.org/10.1164/rccm.201506-1063ST.CrossRefGoogle Scholar
  8. 8.
    Mason DP, Brizzio ME, Alster JM, McNeill AM, Murthy SC, Budev MM, Mehta AC, Minai OA, Pettersson GB, Blackstone EH. Lung transplantation for idiopathic pulmonary fibrosis. Ann Thorac Surg. 2007;84(4):1121–8.  https://doi.org/10.1016/j.athoracsur.2007.04.096.CrossRefPubMedGoogle Scholar
  9. 9.
    Karimi-Shah BA, Chowdhury BA. Forced vital capacity in idiopathic pulmonary fibrosis – FDA review of pirfenidone and nintedanib. N Engl J Med. 2015;372(13):1189–91.  https://doi.org/10.1056/NEJMp1500526.CrossRefPubMedGoogle Scholar
  10. 10.
    Chambers RC, Mercer PF. Mechanisms of alveolar epithelial injury, repair, and fibrosis. Ann Am Thorac Soc. 2015;12(Suppl 1):S16–20.  https://doi.org/10.1513/AnnalsATS.201410-448MG.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tanjore H, Blackwell TS, Lawson WE. Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2012;302(8):L721–9.  https://doi.org/10.1152/ajplung.00410.2011.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rock JR, Hogan BL. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol. 2011;27:493–512.  https://doi.org/10.1146/annurev-cellbio-100109-104040.CrossRefPubMedGoogle Scholar
  13. 13.
    Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, Wikenheiser-Brokamp KA, Perl AT, Funari VA, Gokey JJ, Stripp BR, Whitsett JA. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight. 2016;1(20):e90558.  https://doi.org/10.1172/jci.insight.90558.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Moore MW, Herzog EL. Regulation and relevance of myofibroblast responses in idiopathic pulmonary fibrosis. Curr Pathobiol Rep. 2013;1(3):199–208.  https://doi.org/10.1007/s40139-013-0017-8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol. 2007;170(6):1807–16.  https://doi.org/10.2353/ajpath.2007.070112.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Munoz-Espin D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15(7):482–96.  https://doi.org/10.1038/nrm3823.CrossRefPubMedGoogle Scholar
  17. 17.
    Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, Atkinson EJ, Oberg AL, Birch J, Salmonowicz H, Zhu Y, Mazula DL, Brooks RW, Fuhrmann-Stroissnigg H, Pirtskhalava T, Prakash YS, Tchkonia T, Robbins PD, Aubry MC, Passos JF, Kirkland JL, Tschumperlin DJ, Kita H, LeBrasseur NK. Cellular senescence mediates fibrotic pulmonary disease. Nat Commun. 2017;8:14532.  https://doi.org/10.1038/ncomms14532.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li Y, Jiang D, Liang J, Meltzer EB, Gray A, Miura R, Wogensen L, Yamaguchi Y, Noble PW. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med. 2011;208(7):1459–71.  https://doi.org/10.1084/jem.20102510.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li Y, Liang J, Yang T, Monterrosa Mena J, Huan C, Xie T, Kurkciyan A, Liu N, Jiang D, Noble PW. Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis. Matrix Biol. 2016;55:35–48.  https://doi.org/10.1016/j.matbio.2016.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bueno M, Lai YC, Romero Y, Brands J, St Croix CM, Kamga C, Corey C, Herazo-Maya JD, Sembrat J, Lee JS, Duncan SR, Rojas M, Shiva S, Chu CT, Mora AL. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest. 2015;125(2):521–38.  https://doi.org/10.1172/JCI74942.CrossRefPubMedGoogle Scholar
  21. 21.
    Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802–12.  https://doi.org/10.1038/nrm3896.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Klingberg F, Hinz B, White ES. The myofibroblast matrix: implications for tissue repair and fibrosis. J Pathol. 2013;229(2):298–309.  https://doi.org/10.1002/path.4104.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    White ES. Lung extracellular matrix and fibroblast function. Ann Am Thorac Soc. 2015;12(Suppl 1):S30–3.  https://doi.org/10.1513/AnnalsATS.201406-240MG.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hynes RO, Naba A. Overview of the matrisome – an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012;4(1):a004903.  https://doi.org/10.1101/cshperspect.a004903.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. 2012;11(4):M111 014647.  https://doi.org/10.1074/mcp.M111.014647.CrossRefPubMedGoogle Scholar
  26. 26.
    Bringardner BD, Baran CP, Eubank TD, Marsh CB. The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxid Redox Signal. 2008;10(2):287–301.  https://doi.org/10.1089/ars.2007.1897.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18(7):1028–40.  https://doi.org/10.1038/nm.2807.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kolahian S, Fernandez IE, Eickelberg O, Hartl D. Immune mechanisms in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2016;55(3):309–22.  https://doi.org/10.1165/rcmb.2016-0121TR.CrossRefPubMedGoogle Scholar
  29. 29.
    Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM, McQuattie-Pimentel AC, Chen CI, Anekalla KR, Joshi N, Williams KJN, Abdala-Valencia H, Yacoub TJ, Chi M, Chiu S, Gonzalez-Gonzalez FJ, Gates K, Lam AP, Nicholson TT, Homan PJ, Soberanes S, Dominguez S, Morgan VK, Saber R, Shaffer A, Hinchcliff M, Marshall SA, Bharat A, Berdnikovs S, Bhorade SM, Bartom ET, Morimoto RI, Balch WE, Sznajder JI, Chandel NS, Mutlu GM, Jain M, Gottardi CJ, Singer BD, Ridge KM, Bagheri N, Shilatifard A, Budinger GRS, Perlman H. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med. 2017.  https://doi.org/10.1084/jem.20162152.CrossRefGoogle Scholar
  30. 30.
    Hams E, Armstrong ME, Barlow JL, Saunders SP, Schwartz C, Cooke G, Fahy RJ, Crotty TB, Hirani N, Flynn RJ, Voehringer D, McKenzie AN, Donnelly SC, Fallon PG. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc Natl Acad Sci U S A. 2014;111(1):367–72.  https://doi.org/10.1073/pnas.1315854111.CrossRefPubMedGoogle Scholar
  31. 31.
    Veerappan A, O’Connor NJ, Brazin J, Reid AC, Jung A, McGee D, Summers B, Branch-Elliman D, Stiles B, Worgall S, Kaner RJ, Silver RB. Mast cells: a pivotal role in pulmonary fibrosis. DNA Cell Biol. 2013;32(4):206–18.  https://doi.org/10.1089/dna.2013.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Feghali-Bostwick CA, Wilkes DS. Autoimmunity in idiopathic pulmonary fibrosis: are circulating autoantibodies pathogenic or epiphenomena? Am J Respir Crit Care Med. 2011;183(6):692–3.  https://doi.org/10.1164/rccm.201010-1727ED.CrossRefPubMedGoogle Scholar
  33. 33.
    Donahoe M, Valentine VG, Chien N, Gibson KF, Raval JS, Saul M, Xue J, Zhang Y, Duncan SR. Autoantibody-targeted treatments for acute exacerbations of idiopathic pulmonary fibrosis. PLoS One. 2015;10(6):e0127771.  https://doi.org/10.1371/journal.pone.0127771.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rafii R, Juarez MM, Albertson TE, Chan AL. A review of current and novel therapies for idiopathic pulmonary fibrosis. J Thorac Dis. 2013;5(1):48–73.  https://doi.org/10.3978/j.issn.2072-1439.2012.12.07.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hoyne GF, Elliott H, Mutsaers SE, Prele CM. Idiopathic pulmonary fibrosis and a role for autoimmunity. Immunol Cell Biol. 2017.  https://doi.org/10.1038/icb.2017.22.CrossRefGoogle Scholar
  36. 36.
    Kropski JA, Blackwell TS, Loyd JE. The genetic basis of idiopathic pulmonary fibrosis. Eur Respir J. 2015;45(6):1717–27.  https://doi.org/10.1183/09031936.00163814.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Oldham JM, Ma SF, Martinez FJ, Anstrom KJ, Raghu G, Schwartz DA, Valenzi E, Witt L, Lee C, Vij R, Huang Y, Strek ME, Noth I, Investigators IP. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2015;192(12):1475–82.  https://doi.org/10.1164/rccm.201505-1010OC.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tzouvelekis A, Kaminski N. Epigenetics in idiopathic pulmonary fibrosis. Biochem Cell Biol. 2015;93(2):159–70.  https://doi.org/10.1139/bcb-2014-0126.CrossRefPubMedGoogle Scholar
  39. 39.
    Huang C, Yang Y, Liu L. Interaction of long noncoding RNAs and microRNAs in the pathogenesis of idiopathic pulmonary fibrosis. Physiol Genomics. 2015;47(10):463–9.  https://doi.org/10.1152/physiolgenomics.00064.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Molyneaux PL, Willis-Owen SAG, Cox MJ, James P, Cowman S, Loebinger M, Blanchard A, Edwards LM, Stock C, Daccord C, Renzoni EA, Wells AU, Moffatt MF, Cookson WOC, Maher TM. Host-microbial interactions in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017;195(12):1640–50.  https://doi.org/10.1164/rccm.201607-1408OC.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Han MK, Zhou Y, Murray S, Tayob N, Noth I, Lama VN, Moore BB, White ES, Flaherty KR, Huffnagle GB, Martinez FJ, Investigators C. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: an analysis of the COMET study. Lancet Respir Med. 2014;2(7):548–56.  https://doi.org/10.1016/S2213-2600(14)70069-4.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Molyneaux PL, Cox MJ, Wells AU, Kim HC, Ji W, Cookson WO, Moffatt MF, Kim DS, Maher TM. Changes in the respiratory microbiome during acute exacerbations of idiopathic pulmonary fibrosis. Respir Res. 2017;18(1):29.  https://doi.org/10.1186/s12931-017-0511-3.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pandit KV, Milosevic J. MicroRNA regulatory networks in idiopathic pulmonary fibrosis. Biochem Cell Biol. 2015;93(2):129–37.  https://doi.org/10.1139/bcb-2014-0101.CrossRefPubMedGoogle Scholar
  44. 44.
    Mizuno K, Mataki H, Seki N, Kumamoto T, Kamikawaji K, Inoue H. MicroRNAs in non-small cell lung cancer and idiopathic pulmonary fibrosis. J Hum Genet. 2017;62(1):57–65.  https://doi.org/10.1038/jhg.2016.98.CrossRefPubMedGoogle Scholar
  45. 45.
    Yang IV, Schwartz DA. Epigenetics of idiopathic pulmonary fibrosis. Transl Res. 2015;165(1):48–60.  https://doi.org/10.1016/j.trsl.2014.03.011.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wenzke KE, Cantemir-Stone C, Zhang J, Marsh CB, Huang K. Identifying common genes and networks in multi-organ fibrosis. AMIA Jt Summits Transl Sci Proc. 2012;2012:106–15.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Moore BB, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol. 2013;49(2):167–79.  https://doi.org/10.1165/rcmb.2013-0094TR.CrossRefGoogle Scholar
  48. 48.
    Surolia R, Li FJ, Wang Z, Li H, Liu G, Zhou Y, Luckhardt T, Bae S, Liu RM, Rangarajan S, de Andrade J, Thannickal VJ, Antony VB. 3D pulmospheres serve as a personalized and predictive multicellular model for assessment of antifibrotic drugs. JCI Insight. 2017;2(8).  https://doi.org/10.1172/jci.insight.94088.
  49. 49.
    Wells AU. The revised ATS/ERS/JRS/ALAT diagnostic criteria for idiopathic pulmonary fibrosis (IPF) – practical implications. Respir Res. 2013;14(Suppl 1):S2.  https://doi.org/10.1186/1465-9921-14-S1-S2.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183(4):431–40.  https://doi.org/10.1164/rccm.201006-0894CI.CrossRefGoogle Scholar
  51. 51.
    Daccord C, Maher TM. Recent advances in understanding idiopathic pulmonary fibrosis. F1000Res. 2016;5.  https://doi.org/10.12688/f1000research.8209.1.CrossRefGoogle Scholar
  52. 52.
    Raghu G, Brown KK, Collard HR, Cottin V, Gibson KF, Kaner RJ, Lederer DJ, Martinez FJ, Noble PW, Song JW, Wells AU, Whelan TP, Wuyts W, Moreau E, Patterson SD, Smith V, Bayly S, Chien JW, Gong Q, Zhang JJ, O'Riordan TG. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respir Med. 2017;5(1):22–32.  https://doi.org/10.1016/S2213-2600(16)30421-0.CrossRefPubMedGoogle Scholar
  53. 53.
    Raghu G, Scholand MB, de Andrade J, Lancaster L, Mageto Y, Goldin J, Brown KK, Flaherty KR, Wencel M, Wanger J, Neff T, Valone F, Stauffer J, Porter S. FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur Respir J. 2016;47(5):1481–91.  https://doi.org/10.1183/13993003.01030-2015.CrossRefPubMedGoogle Scholar
  54. 54.
    Chambers DC, Enever D, Ilic N, Sparks L, Whitelaw K, Ayres J, Yerkovich ST, Khalil D, Atkinson KM, Hopkins PM. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis. Respirology. 2014;19(7):1013–8.  https://doi.org/10.1111/resp.12343.CrossRefPubMedGoogle Scholar
  55. 55.
    Glassberg MK, Minkiewicz J, Toonkel RL, Simonet ES, Rubio GA, DiFede D, Shafazand S, Khan A, Pujol MV, LaRussa VF, Lancaster LH, Rosen GD, Fishman J, Mageto YN, Mendizabal A, Hare JM. Allogeneic human mesenchymal stem cells in patients with idiopathic pulmonary fibrosis via intravenous delivery (AETHER): a phase I safety clinical trial. Chest. 2017;151(5):971–81.  https://doi.org/10.1016/j.chest.2016.10.061.CrossRefPubMedGoogle Scholar
  56. 56.
    Raghu G, Collard HR, Anstrom KJ, Flaherty KR, Fleming TR, King TE Jr, Martinez FJ, Brown KK. Idiopathic pulmonary fibrosis: clinically meaningful primary endpoints in phase 3 clinical trials. Am J Respir Crit Care Med. 2012;185(10):1044–8.  https://doi.org/10.1164/rccm.201201-0006PP.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Wells AU. Forced vital capacity as a primary end point in idiopathic pulmonary fibrosis treatment trials: making a silk purse from a sow's ear. Thorax. 2013;68(4):309–10.  https://doi.org/10.1136/thoraxjnl-2012-202640.CrossRefGoogle Scholar
  58. 58.
    du Bois RM, Nathan SD, Richeldi L, Schwarz MI, Noble PW. Idiopathic pulmonary fibrosis: lung function is a clinically meaningful endpoint for phase III trials. Am J Respir Crit Care Med. 2012;186(8):712–5.  https://doi.org/10.1164/rccm.201206-1010PP.CrossRefPubMedGoogle Scholar
  59. 59.
    Olson AL, Swigris JJ, Brown KK. Clinical trials and tribulations – lessons from pulmonary fibrosis. QJM. 2012;105(11):1043–7.  https://doi.org/10.1093/qjmed/hcs066.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    King TE Jr, Bradford WZ, Castro-Bernardini S, Fagan EA, Glaspole I, Glassberg MK, Gorina E, Hopkins PM, Kardatzke D, Lancaster L, Lederer DJ, Nathan SD, Pereira CA, Sahn SA, Sussman R, Swigris JJ, Noble PW, Group AS. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2083–92.  https://doi.org/10.1056/NEJMoa1402582.CrossRefPubMedGoogle Scholar
  61. 61.
    Nathan SD, Meyer KC. IPF clinical trial design and endpoints. Curr Opin Pulm Med. 2014;20(5):463–71.  https://doi.org/10.1097/MCP.0000000000000091.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. Matt Craig
    • 1
  • Neil R. Aggarwal
    • 1
  • James P. Kiley
    • 1
    Email author
  1. 1.Division of Lung DiseasesNational Heart, Lung, and Blood InstituteBethesdaUSA

Personalised recommendations