Advertisement

Clinical Trials in IPF: What Are the Best Endpoints?

  • Paolo Spagnolo
  • Elisabetta Cocconcelli
  • Vincent CottinEmail author
Chapter
Part of the Respiratory Medicine book series (RM)

Abstract

Idiopathic pulmonary fibrosis (IPF), the most common and lethal of all chronic idiopathic interstitial pneumonias, is a disease that is rare and is still regarded as an orphan condition. Indeed, in the last decade more than 3000 patients have been enrolled in high-quality clinical trials of IPF, an impressive achievement for a rare condition. The most challenging obstacle in clinical trials of orphan drugs is the recruitment of an adequate number of patients to obtain sufficient evidence of efficacy and safety. Similarly critical, if not more so, is the choice of the appropriate primary endpoint(s). In disorders with a poor prognosis – like IPF – survival is the most logical outcome to measure the efficacy of a given drug. However, such trial design is feasible only in diseases that are fairly common and have a short survival with no treatment already approved. When a mortality study is impracticable, an alternative approach involves the use of predictors of survival.

There is a general agreement that the ideal primary endpoint should be reliable, reproducible, clinically meaningful, predictive of outcome, responsive to treatment effect, equally applicable to all patients, and easy to measure. However, none of the outcomes utilized over the last decade of clinical trials of IPF meets all these criteria. More attention is currently paid by physicians and regulators to endpoints that are meaningful to patients even on a short-term basis, including symptoms and quality of life measurements. In this chapter we carefully analyze the pros and cons of the outcomes most commonly used in pharmacological studies of IPF and suggest that the choice of the appropriate primary endpoint should balance scientific, statistical, and clinical rigor as well as clinical trial feasibility.

Keywords

Idiopathic pulmonary fibrosis Clinical trials Primary endpoints Forced vital capacity Outcomes Survival 

References

  1. 1.
    Richeldi L, Collard HR, Jones MG. Idiopathic pulmonary fibrosis. Lancet. 2017;389:1941–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Martinez FJ, Safrin S, Weycker D, et al. The clinical course of patients with idiopathic pulmonary fibrosis. Ann Intern Med. 2005;142:963–7.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kistler KD, Nalysnyk L, Rotella P, Esser D. Lung transplantation in idiopathic pulmonary fibrosis: a systematic review of the literature. BMC Pulm Med. 2014;14:139.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Azuma A, Nukiwa T, Tsuboi E, et al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2005;171:1040–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Taniguchi H, Ebina M, Kondoh Y, et al. Pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35:821–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Noble PW, Albera C, Bradford WZ, et al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet. 2011;377:1760–9.PubMedCrossRefGoogle Scholar
  7. 7.
    King TE Jr, Bradford WZ, Castro-Bernardini S, et al. A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2083–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Richeldi L, Costabel U, Selman M, et al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N Engl J Med. 2011;365:1079–87.PubMedCrossRefGoogle Scholar
  9. 9.
    Richeldi L, du Bois RM, Raghu G, et al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2071–82.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Raghu G, Behr J, Brown KK. Treatment of idiopathic pulmonary fibrosis with ambrisentan: a parallel, randomized trial. Ann Intern Med. 2013;158:641–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Demedts M, Behr J, Buhl R, et al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2005;353:2229–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Idiopathic Pulmonary Fibrosis Clinical Research Network, Martinez FJ, de Andrade JA, Anstrom KJ, King TE Jr, Raghu G. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N Engl J Med. 2012;366:1968–77.CrossRefGoogle Scholar
  13. 13.
    King TE Jr, Behr J, Brown KK, et al. BUILD-1: a randomized placebo-controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2008;177:75–81.PubMedCrossRefGoogle Scholar
  14. 14.
    King TE Jr, Brown KK, Raghu G. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184:92–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Raghu G, Martinez FJ, Brown KK, et al. CC-chemokine ligand 2 inhibition in idiopathic pulmonary fibrosis: a phase 2 trial of carlumab. Eur Respir J. 2015;46:1740–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Shulgina L, Cahn AP, Chilvers ER, et al. Treating idiopathic pulmonary fibrosis with the addition of co-trimoxazole: a randomised controlled trial. Thorax. 2013;68:155–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Raghu G, Brown KK, Costabel U, et al. Treatment of idiopathic pulmonary fibrosis with etanercept: an exploratory, placebo-controlled trial. Am J Respir Crit Care Med. 2008;178:948–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Malouf MA, Hopkins P, Snell G, Glanville AR. Everolimus in IPF study investigators. An investigator-driven study of everolimus in surgical lung biopsy confirmed idiopathic pulmonary fibrosis. Respirology. 2011;16:776–83.PubMedCrossRefGoogle Scholar
  19. 19.
    Daniels CE, Lasky JA, Limper AH, et al. Imatinib treatment for idiopathic pulmonary fibrosis: randomized placebo-controlled trial results. Am J Respir Crit Care Med. 2010;181:604–10.PubMedCrossRefGoogle Scholar
  20. 20.
    Raghu G, Brown KK, Bradford WZ. A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N Engl J Med. 2004;350:125–33.PubMedCrossRefGoogle Scholar
  21. 21.
    King TE Jr, Albera C, Bradford WZ. Effect of interferon gamma-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet. 2009;374:222–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Raghu G, Million-Rousseau R, Morganti A, Perchenet L, Behr J, MUSIC Study Group. Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur Respir J. 2013;42:1622–32.PubMedCrossRefGoogle Scholar
  23. 23.
    Idiopathic Pulmonary Fibrosis Clinical Research Network, Martinez FJ, de Andrade JA, Anstrom KJ, King TE Jr, Raghu G. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2093–3101.CrossRefGoogle Scholar
  24. 24.
    Raghu G, Scholand MB, de Andrade J, et al. FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur Respir J. 2016;47:1481–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Idiopathic Pulmonary Fibrosis Clinical Research Network, Zisman DA, Schwarz M, Anstrom KJ, Collard HR, Flaherty KR, Hunninghake GW. A controlled trial of sildenafil in advanced idiopathic pulmonary fibrosis. N Engl J Med. 2010;363:620–8.CrossRefGoogle Scholar
  26. 26.
    Raghu G, Brown KK, Collard HR, et al. Efficacy of simtuzumab versus placebo in patients with idiopathic pulmonary fibrosis: a randomised, double-blind, controlled, phase 2 trial. Lancet Respir Med. 2017;5:22–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Parker JM, Glaspole IN, Lancaster LH, et al. A phase 2 randomized controlled study of Tralokinumab in subjects with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2018;197:94–103.PubMedCrossRefGoogle Scholar
  28. 28.
    Noth I, Anstrom KJ, Calvert SB, et al. A placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;186:88–95.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Karimi-Shah BA, Chowdhury BA. Forced vital capacity in idiopathic pulmonary fibrosis – FDA review of pirfenidone and nintedanib. N Engl J Med. 2015;372:1189–91.PubMedCrossRefGoogle Scholar
  30. 30.
    Nathan SD, Meyer KC. IPF clinical trial design and endpoints. Curr Opin Pulm Med. 2014;20:463–71.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Raghu G, Collard HR, Anstrom KJ, et al. Idiopathic pulmonary fibrosis: clinically meaningful primary endpoints in phase 3 clinical trials. Am J Respir Crit Care Med. 2012;185:1044–8.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    King TE Jr, Albera C, Bradford WZ, et al. All-cause mortality rate in patients with idiopathic pulmonary fibrosis. Implications for the design and execution of clinical trials. Am J Respir Crit Care Med. 2014;189:825–31.CrossRefGoogle Scholar
  33. 33.
    du Bois RM, Weycker D, Albera C, et al. Ascertainment of individual risk of mortality for patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184:459–66.CrossRefGoogle Scholar
  34. 34.
    Flaherty KR, Mumford JA, Murray S, et al. Prognostic implications of physiologic and radiographic changes in idiopathic interstitial pneumonia. Am J Respir Crit Care Med. 2003;168:543–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Richeldi L, Ryerson CJ, Lee JS, et al. Relative versus absolute change in forced vital capacity in idiopathic pulmonary fibrosis. Thorax. 2012;67:407–11.CrossRefGoogle Scholar
  36. 36.
    Zappala CJ, Latsi PI, Nicholson AG, et al. Marginal decline in forced vital capacity is associated with a poor outcome in idiopathic pulmonary fibrosis. Eur Respir J. 2010;35:830–6.CrossRefGoogle Scholar
  37. 37.
    Paterniti MO, Bi Y, Rekić D, et al. Acute exacerbation and decline in forced vital capacity are associated with increased mortality in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017;14:1395–402.CrossRefGoogle Scholar
  38. 38.
    Latsi PI, du Bois RM, Nicholson AG, et al. Fibrotic idiopathic interstitial pneumonia: the prognostic value of longitudinal functional trends. Am J Respir Crit Care Med. 2003;168:531–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Collard HR, King TE Jr, Bartelson BB, et al. Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2003;168:538–42.CrossRefGoogle Scholar
  40. 40.
    King TE Jr, Safrin S, Starko KM, et al. Analyses of efficacy end points in a controlled trial of interferon-gamma1b for idiopathic pulmonary fibrosis. Chest. 2005;127:171–7.CrossRefGoogle Scholar
  41. 41.
    Jegal Y, Kim DS, Shim TS, et al. Physiology is a stronger predictor of survival than pathology in fibrotic interstitial pneumonia. Am J Respir Crit Care Med. 2005;171:639–44.PubMedCrossRefGoogle Scholar
  42. 42.
    Peelen L, Wells AU, Prijs M, et al. Fibrotic idiopathic interstitial pneumonias: mortality is linked to a decline in gas transfer. Respirology. 2010;15:1233–43.PubMedCrossRefGoogle Scholar
  43. 43.
    Corte TJ, Wort SJ, Macdonald PS, et al. Pulmonary function vascular index predicts prognosis in idiopathic interstitial pneumonia. Respirology. 2012;17:674–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Schmidt SL, Nambiar AM, Tayob N, et al. Pulmonary function measures predict mortality differently in idiopathic pulmonary fibrosis versus combined pulmonary fibrosis and emphysema. Eur Respir J. 2011;38:176–83.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Ley B. Clarity on endpoints for clinical trials in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2017;14:1383–4.CrossRefGoogle Scholar
  46. 46.
    Podolanczuk AJ, Lederer DJ. Patient-centered outcomes in idiopathic pulmonary fibrosis clinical trials. Am J Respir Crit Care Med. 2017;196:674–5.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–7.Google Scholar
  48. 48.
    Caminati A, Bianchi A, Cassandro R, et al. Walking distance on 6-MWT is a prognostic factor in idiopathic pulmonary fibrosis. Respir Med. 2009;103:117–23.PubMedCrossRefGoogle Scholar
  49. 49.
    Chetta A, Aiello M, Foresi A, et al. Relationship between outcome measures of six-minute walk test and baseline lung function in patients with interstitial lung disease. Sarcoidosis Vasc Diffuse Lung Dis. 2001;18:170–5.PubMedGoogle Scholar
  50. 50.
    Eaton T, Young P, Milne D, et al. Six-minute walk, maximal exercise tests: reproducibility in fibrotic interstitial pneumonia. Am J Respir Crit Care Med. 2005;171:1150–7.PubMedCrossRefGoogle Scholar
  51. 51.
    Lederer DJ, Arcasoy SM, Wilt JS, et al. Six-minute-walk distance predicts waiting list survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2006;174:659–64.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    du Bois RM, Weycker D, Albera C, et al. Six-minute-walk test in idiopathic pulmonary fibrosis: test validation and minimal clinically important difference. Am J Respir Crit Care Med. 2011;183:1231–7.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nathan SD, du Bois RM, Albera C, et al. Validation of test performance characteristics and minimal clinically important difference of the 6-minute walk test in patients with idiopathic pulmonary fibrosis. Respir Med. 2015;109:914–22.PubMedCrossRefGoogle Scholar
  54. 54.
    Lama VN, Flaherty KR, Toews GB, et al. Prognostic value of desaturation during a 6-minute walk test in idiopathic interstitial pneumonia. Am J Respir Crit Care Med. 2003;168:1084–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Swigris JJ, Swick J, Wamboldt FS, et al. Heart rate recovery after 6-min walk test predicts survival in patients with idiopathic pulmonary fibrosis. Chest. 2009;136:841–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Brown AW, Nathan SD. The value and application of the 6-minute-walk test in idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2018;15:3–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Heresi GA, Dweik RA. Strengths and limitations of the six-minute-walk test: a model biomarker study in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183:1122–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Ley B, Swigris J, Day BM, et al. Pirfenidone reduces respiratory-related hospitalizations in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2017;196:756–61.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Collard HR, Ryerson CJ, Corte TJ, et al. Acute exacerbation of idiopathic pulmonary fibrosis. An international working group report. Am J Respir Crit Care Med. 2016;194:265–75.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Collard HR, Richeldi L, Kim DS, et al. Acute exacerbations in the INPULSIS trials of nintedanib in idiopathic pulmonary fibrosis. Eur Respir J. 2017;49(5). pii: 1601339.  https://doi.org/10.1183/13993003.01339-2016.PubMedCrossRefGoogle Scholar
  61. 61.
    Collard HR, Moore BB, Flaherty KR, et al. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2007;176:636–43.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    de Andrade J, Schwarz M, Collard HR, et al. The idiopathic pulmonary fibrosis clinical research network (IPFnet) diagnostic and adjudication processes. Chest. 2015;148:1034–42.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ley B, Collard HR, King TE Jr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2011;183:431–40.CrossRefGoogle Scholar
  64. 64.
    Nathan SD, Albera C, Bradford WZ, et al. Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. Lancet Respir Med. 2017;5:33–41.PubMedCrossRefGoogle Scholar
  65. 65.
    Deshpande PR, Rajan S, Sudeepthi BL, Abdul Nazir CP. Patient-reported outcomes: a new era in clinical research. Perspect Clin Res. 2011;2:137–44.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St. George’s respiratory questionnaire. Am Rev Respir Dis. 1992;145:1321–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Swigris JJ, Esser D, Wilson H, et al. Psychometric properties of the St George’s respiratory questionnaire in patients with idiopathic pulmonary fibrosis. Eur Respir J. 2017;49(1). pii: 1601788.  https://doi.org/10.1183/13993003.01788-2016.CrossRefGoogle Scholar
  68. 68.
    Furukawa T, Taniguchi H, Ando M, et al. The St. George’s respiratory questionnaire as a prognostic factor in IPF. Respir Res. 2017;18:18.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Yorke J, Jones PW, Swigris JJ. Development and validity testing of an IPF-specific version of the St George’s respiratory questionnaire. Thorax. 2010;65:921–6.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Patel AS, Siegert RJ, Brignall K, et al. The development and validation of the King’s brief interstitial lung disease (K-BILD) health status questionnaire. Thorax. 2012;67:804–10.PubMedCrossRefGoogle Scholar
  71. 71.
    Wapenaar M, Patel AS, Birring SS, et al. Translation and validation of the King’s brief interstitial lung disease (K-BILD) questionnaire in French, Italian, Swedish, and Dutch. Chron Respir Dis. 2017;14:140–50.PubMedCrossRefGoogle Scholar
  72. 72.
    Swigris JJ, Wilson SR, Green KE, et al. Development of the ATAQ-IPF: a tool to assess quality of life in IPF. Health Qual Life Outcomes. 2010;8:77.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Matsuda T, Taniguchi H, Ando M, et al. COPD assessment test for measurement of health status in patients with idiopathic pulmonary fibrosis: a cross-sectional study. Respirology. 2017;22:721–7.PubMedCrossRefGoogle Scholar
  74. 74.
    Ryerson CJ, Abbritti M, Ley B, et al. Cough predicts prognosis in idiopathic pulmonary fibrosis. Respirology. 2011;16:969–75.PubMedCrossRefGoogle Scholar
  75. 75.
    van Manen MJ, Birring SS, Vancheri C, et al. Cough in idiopathic pulmonary fibrosis. Eur Respir Rev. 2016;25:278–86.PubMedCrossRefGoogle Scholar
  76. 76.
    van Manen MJG, Birring SS, Vancheri C, et al. Effect of pirfenidone on cough in patients with idiopathic pulmonary fibrosis. Eur Respir J. 2017;50:1701157.  https://doi.org/10.1183/13993003.01157-2017.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hansell DM, Goldin JG, King TE Jr, et al. CT staging and monitoring of fibrotic interstitial lung diseases in clinical practice and treatment trials: a position paper from the Fleischner society. Lancet Respir Med. 2015;3:483–96.PubMedCrossRefGoogle Scholar
  78. 78.
    Kim EA, Johkoh T, Lee KS, et al. Interstitial pneumonia in progressive systemic sclerosis: serial high-resolution CT findings with functional correlation. J Comput Assist Tomogr. 2001;25:757–63.PubMedCrossRefGoogle Scholar
  79. 79.
    Jeong YJ, Lee KS, Müller NL, et al. Usual interstitial pneumonia and non-specific interstitial pneumonia: serial thin-section CT findings correlated with pulmonary function. Korean J Radiol. 2005;6:143–52.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Iwasawa T, Ogura T, Sakai F, et al. CT analysis of the effect of pirfenidone in patients with idiopathic pulmonary fibrosis. Eur J Radiol. 2014;83:32–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Kim HJ, Li G, Gjertson D, et al. Classification of parenchymal abnormality in scleroderma lung using a novel approach to denoise images collected via a multicenter study. Acad Radiol. 2008;15:1004–16.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhang Y, Kaminski N. Biomarkers in idiopathic pulmonary fibrosis. Curr Opin Pulm Med. 2012;18:441–6.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Saini G, Porte J, Weinreb PH, et al. αvβ6 integrin may be a potential prognostic biomarker in interstitial lung disease. Eur Respir J. 2015;46:486–94.PubMedCrossRefGoogle Scholar
  84. 84.
    Chien JW, Richards TJ, Gibson KF, et al. Serum lysyl oxidase-like 2 levels and idiopathic pulmonary fibrosis disease progression. Eur Respir J. 2014;43:1430–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Spagnolo P, Rossi G, Cavazza A. Pathogenesis of idiopathic pulmonary fibrosis and its clinical implications. Expert Rev Clin Immunol. 2014;10:1005–17.PubMedCrossRefGoogle Scholar
  86. 86.
    Jenkins RG, Simpson JK, Saini G, et al. Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respir Med. 2015;3:462–72.PubMedCrossRefGoogle Scholar
  87. 87.
    Maher TM, Oballa E, Simpson JK, et al. An epithelial biomarker signature for idiopathic pulmonary fibrosis: an analysis from the multicentre PROFILE cohort study. Lancet Respir Med. 2017;5:946–55.PubMedCrossRefGoogle Scholar
  88. 88.
    Herazo-Maya JD, Noth I, Duncan SR, et al. Peripheral blood mononuclear cell gene expression profiles predict poor outcome in idiopathic pulmonary fibrosis. Sci Transl Med. 2013;5:205ra136.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Herazo-Maya JD, Sun J, Molyneaux PL, et al. Validation of a 52-gene risk profile for outcome prediction in patients with idiopathic pulmonary fibrosis: an international, multicentre, cohort study. Lancet Respir Med. 2017;5:857–68.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ferreira-González I, Permanyer-Miralda G, Busse JW, et al. Methodologic discussions for using and interpreting composite endpoints are limited, but still identify major concerns. J Clin Epidemiol. 2007;60:651–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Freemantle N, Calvert M, Wood J, Eastaugh J, Griffin C. Composite outcomes in randomized trials: greater precision but with greater uncertainty? JAMA. 2003;289:2554–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Ferreira-González I, Busse JW, Heels-Ansdell D, et al. Problems with use of composite end points in cardiovascular trials: systematic review of randomised controlled trials. BMJ. 2007;334:786.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Durheim MT, Collard HR, Roberts RS, et al. Association of hospital admission and forced vital capacity endpoints with survival in patients with idiopathic pulmonary fibrosis: analysis of a pooled cohort from three clinical trials. Lancet Respir Med. 2015;3:388–96.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Wells AU, Desai SR, Rubens MB, et al. Idiopathic pulmonary fibrosis: a composite physiologic index derived from disease extent observed by computed tomography. Am J Respir Crit Care Med. 2003;167:962–9.CrossRefGoogle Scholar
  95. 95.
    Ley B, Bradford WZ, Vittinghoff E, et al. Predictors of mortality poorly predict common measures of disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2016;194:711–8.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Collard HR, Brown KK, Martinez FJ, et al. Study design implications of death and hospitalization as endpoints in idiopathic pulmonary fibrosis. Chest. 2014;146:1256–62.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Ley B, Bradford WZ, Weycker D, et al. Unified baseline and longitudinal mortality prediction in idiopathic pulmonary fibrosis. Eur Respir J. 2015;45:1374–81.CrossRefGoogle Scholar
  98. 98.
    O'Riordan TG, Smith V, Raghu G. Development of novel agents for idiopathic pulmonary fibrosis: progress in target selection and clinical trial design. Chest. 2015;148:1083–92.PubMedCrossRefGoogle Scholar
  99. 99.
    Spagnolo P, Tzouvelekis A, Maher TM. Personalized medicine in idiopathic pulmonary fibrosis: facts and promises. Curr Opin Pulm Med. 2015;21:470–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Oldham JM, Ma SF, Martinez FJ, et al. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2015;192:1475–82.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paolo Spagnolo
    • 1
  • Elisabetta Cocconcelli
    • 1
  • Vincent Cottin
    • 2
    Email author
  1. 1.Section of Respiratory Diseases, Department of Cardiac, Thoracic, and Vascular SciencesUniversity of PaduaPaduaItaly
  2. 2.Department of Pulmonary Medicine and National Reference Center for Rare Pulmonary Diseases, Competence Center for Pulmonary Arterial Hypertension, Louis Pradel Hospital, Hospices Civils de LyonClaude Bernard Lyon 1 UniversityLyonFrance

Personalised recommendations