Exploring IoT Applications for Disaster Management: Identifying Key Factors and Proposing Future Directions

  • Umara Zafar
  • Munam Ali Shah
  • Abdul WahidEmail author
  • Adnan Akhunzada
  • Shahan Arif
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


In the last few decades, disasters made a huge loss to human beings, natural resources, and other assets. As we are living in an era of technology, there can be no other way better than using ICT (information and communication technology) for disaster management, as communication is the most challenging part of it. The Internet of Things (IoT), a rapidly emerging framework, can be utilized in the best possible ways for the disaster preparedness phase to recovery phase. This paper presents the survey of the work done for disaster management using technology. A detailed analysis has performed to categorize different approaches of disaster management based on supporting phase and technologies used. The best used technology is highlighted. Moreover, forecasting about the growth of its usage and the enhancement in disaster management is also done in this paper. The paper also presents new direction of research in this most attention-grabbing topic.


Internet of Things RFID IoT framework ICT Disaster management 


  1. 1.
    Khan, R., Khan, S. U., Zaheer, R., & Khan, S. (2012). Future internet: The internet of things architecture, possible applications and key challenges. In Proceedings of the 10th International Conference on Frontiers of Information Technology (FIT) 2012 (pp. 257–260).Google Scholar
  2. 2.
    Chun, S.-M., & Park, J.-T. (2017). A mechanism for reliable mobility management for internet of things using CoAP. Sensors, 17(1), 136.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Khodadadi, F., Dastjerdi, A. V., & Buyya, R. (2017). Internet of Things: An overview. arXiv preprint arXiv:1703.06409.Google Scholar
  4. 4.
    Jan, M. A., Nanda, P., He, X., Tan, Z., & Liu, R. P. (2014, September). A robust authentication scheme for observing resources in the internet of things environment. In 2014 IEEE 13th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) (pp. 205–211). Beijing, China: IEEE.Google Scholar
  5. 5.
    Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.CrossRefGoogle Scholar
  6. 6.
    Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.CrossRefGoogle Scholar
  7. 7.
    Khan, F., Khan, M., Iqbal, Z., ur Rahman, I., & Alam, M. (2016, September). Secure and safe surveillance system using sensors networks-internet of things. In International Conference on Future Intelligent Vehicular Technologies (pp. 167–174). Cham, Switzerland: Springer.Google Scholar
  8. 8.
    Han, G., Yang, X., Liu, L., Guizani, M., & Zhang, W. (2017). A disaster management-oriented path planning for mobile anchor node-based localization in wireless sensor networks. IEEE Transactions on Emerging Topics in Computing. Google Scholar
  9. 9.
    Jan, M. A., Khan, F., Alam, M., & Usman, M. (2017). A payload-based mutual authentication scheme for internet of things. Future Generation Computer Systems. Scholar
  10. 10.
    Jia, X., Feng, Q., Fan, T., & Lei, Q. (2012). RFID technology and its applications in Internet of Things (IoT). In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (pp. 1282–1285).Google Scholar
  11. 11.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A., & Katz, R. (2010). Above the clouds: A Berkeley view of cloud computing (Tech. Rep. UCB) (pp. 07–013). Berkeley, CA: University of California.Google Scholar
  12. 12.
    Khan, F., ur Rahman, I., Khan, M., Iqbal, N., & Alam, M. (2016, September). CoAP-based request-response interaction model for the internet of things. In International Conference on Future Intelligent Vehicular Technologies (pp. 146–156). Cham, Switzerland: Springer.Google Scholar
  13. 13.
    Wattegama, C. (2014). ICT for Disaster Management.
  14. 14.
    Sookhak, M., Akhundzada, A., Sookhak, A., Eslaminejad, M., Gani, A., Khan, M. K., et al. (2015). Geographic wormhole detection in wireless sensor networks. PLoS One, 10(1), e0115324.CrossRefGoogle Scholar
  15. 15.
    Sookhak, M., Akhunzada, A., Gani, A., Khurram Khan, M., & Anuar, N. B. (2014). Towards dynamic remote data auditing in computational clouds. The Scientific World Journal, 2014, 269357.CrossRefGoogle Scholar
  16. 16.
    Abdelaziz, A., Fong, A. T., Gani, A., Garba, U., Khan, S., Akhunzada, A., et al. (2017). Distributed controller clustering in software defined networks. PLoS One, 12(4), e0174715.CrossRefGoogle Scholar
  17. 17.
    Akhunzada, A., Gani, A., Hussain, S., & Khan, A. A. (2016). A formal framework for web service broker to compose QoS measures. In SAI Intelligent Systems Conference (IntelliSys), 2015. Piscataway, NJ: IEEE.Google Scholar
  18. 18.
    Jan, M., Nanda, P., Usman, M., & He, X. (2017). PAWN: A payload-based mutual authentication scheme for wireless sensor networks. Concurrency and Computation: Practice and Experience, 29(17), e3986.CrossRefGoogle Scholar
  19. 19.
    Akhunzada, A., Gani, A., Hussain, S., & Khan, A. A. (2015). Towards experiencing the pair programming as a practice of the Rational Unified Process (RUP). In SAI Intelligent Systems Conference (IntelliSys), 2015. Piscataway, NJ: IEEE.Google Scholar
  20. 20.
    Usman, N., Javaid, Q., Akhunzada, A., Choo, K. K. R., Usman, S., Sher, A., et al. (2017). A novel internet of things-centric framework to mine malicious frequent patterns. IEEE Access, PP(99), 1–1. Scholar
  21. 21.
    Akhunzada, A., Ahmed, E., Gani, A., Khan, M. K., Imran, M., & Guizani, S. (2015). Securing software defined networks: Taxonomy, requirements, and open issues. IEEE Communications Magazine, 53(4), 36–44.CrossRefGoogle Scholar
  22. 22.
    Akhunzada, A., & Khan, M. K. (2017). Toward secure software defined vehicular networks: Taxonomy, requirements, and open issues. IEEE Communications Magazine, 55(7), 110–118.CrossRefGoogle Scholar
  23. 23.
    Khan, F., ur Rehman, A., Usman, M., Tan, Z., & Puthal, D. (2018). Performance of cognitive radio sensor networks using hybrid automatic repeat request: Stop-and-wait. Mobile Networks and Applications, 23, 1–10.CrossRefGoogle Scholar
  24. 24.
    Liu, J., Wen, J., Yang, K., Shang, Z., & Zhang, H. (2011). GIS-based analysis of flood disaster risk in LECZ of China and population exposure. In Proceedings of the 2011 19th International Conference on GeoInformatics, Geoinformatics 2011, no. 40471028 (pp. 0–3).Google Scholar
  25. 25.
    Seal, V., Raha, A., Maity, S., Mitra, S. K., Mukherjee, A., & Naskar, M. K. (2012). A real time multivariate robust regression based flood prediction model using polynomial approximation for wireless sensor network based flood forecasting systems (pp. 432–441). Berlin/Heidelberg, Germany: Springer.Google Scholar
  26. 26.
    Ahmad, N., Hussain, M., Riaz, N., Subhani, F., Haider, S., Alamgir, K. S., et al. (2013). Flood prediction and disaster risk analysis using GIS based wireless sensor networks, a review. Journal of Basic and Applied Scientific Research, 3(8), 632–643.Google Scholar
  27. 27.
    Sulaiman, N. A., Husain, F., Hashim, K. A., & Samad, A. M. (2012). A study on flood risk assessment for Bandar Segamat sustainability using remote sensing and GIS approach. In 2012 IEEE Control and System Graduate Research Colloquium (pp. 386–391).Google Scholar
  28. 28.
    Khattak, M. I., Edwards, R. M., Shafi, M., Ahmed, S., Shaikh, R., & Khan, F. (2018). Wet environmental conditions affecting narrow band on-body communication channel for WBANs. Adhoc & Sensor Wireless Networks, 40, 297–312.Google Scholar
  29. 29.
    Akar, Î., Kalkan, K., & Maktav, D. (2011). Determination of land use effects on flood risk by using integration of GIS and remote sensing. In Recent advances in space technologies.Google Scholar
  30. 30.
    Jan, M. A., Nanda, P., He, X., & Liu, R. P. (2013, November). Enhancing lifetime and quality of data in cluster-based hierarchical routing protocol for wireless sensor network. In 2013 IEEE 10th International Conference on High Performance Computing and Communications & 2013 IEEE International Conference on Embedded and Ubiquitous Computing (HPCC_EUC) (pp. 1400–1407). Zhangjiajie, China: IEEE.Google Scholar
  31. 31.
    Sherief, Y. (2010). Flash floods and their effects on the development in El-Qaá plain area in South Sinai, Egypt. Diss. PhD dissertation, University of Mainz, Germany.Google Scholar
  32. 32.
    Fang, S., Xu, L., Zhu, Y., Liu, Y., Liu, Z., Pei, H., et al. (2015). An integrated information system for snowmelt flood early-warning based on internet of things. Information Systems Frontiers, 17(2), 321–335.CrossRefGoogle Scholar
  33. 33.
    Jan, M. A., Tan, Z., He, X., & Ni, W. (2018). Moving towards highly reliable and effective sensor networks.Google Scholar
  34. 34.
    Liao, Z., Hong, Y., Wang, J., Fukuoka, H., Sassa, K., Karnawati, D., et al. (2010). Prototyping an experimental early warning system for rainfall-induced landslides in Indonesia using satellite remote sensing and geospatial datasets. Landslides, 7(3), 317–324.CrossRefGoogle Scholar
  35. 35.
    Kubo, T., Hisada, Y., Murakami, M., Kosuge, F., & Hamano, K. (2011). Application of an earthquake early warning system and a al-time strong motion monitoring system in emergency response in a high-rise building. Soil Dynamics and Earthquake Engineering, 31(2), 231–239.CrossRefGoogle Scholar
  36. 36.
    Guo, H., Liang, F., & Liu, Y. (2012). Research on sensor cooperation for distributed emergency response system. Journal of Networks, 7(4), 683–690.CrossRefGoogle Scholar
  37. 37.
    Khan, I., Belqasmi, F., Glitho, R., & Crespi, N. (2013). A multi-layer architecture for wireless sensor network virtualization. In 6th Joint IFIP Wireless and Mobile Networking Conference (pp. 1–4).Google Scholar
  38. 38.
    Arjun, D. S., Bala, A., Dwarakanath, V., Sampada, K. S., BB, P. R., & Pasupuleti, H. (2015, June). Integrating cloud-WSN to analyze weather data and notify SaaS user alerts during weather disasters. In Advance computing conference (IACC), 2015 IEEE international (pp. 899–904).CrossRefGoogle Scholar
  39. 39.
    Mir, K., & Hira Fatima, S. (2014). Earthquake auto-SMS alert system – a case study of Pakistan, The 2nd International Conference on Applied Information and Communications Technology - ICAICT.Google Scholar
  40. 40.
    Jan, M. A., Jan, S. R. U., Alam, M., Akhunzada, A., & Rahman, I. U. (2018). A comprehensive analysis of congestion control protocols in wireless sensor networks. Mobile Networks and Applications, 23, 1–13.CrossRefGoogle Scholar
  41. 41.
    Wu, Y.-M., & Kanamori, H. (2008). Development of an earthquake early warning system using real-time strong motion signals. Sensors, 8(1), 1–9.CrossRefGoogle Scholar
  42. 42.
    Peng, H., Wu, Z., Wu, Y.-M., Yu, S., Zhang, D., & Huang, W. (2011). Developing a prototype earthquake early warning system in the Beijing Capital Region. Seismological Research Letters, 82(3), 394–403.CrossRefGoogle Scholar
  43. 43.
    Singh, R. D., Kumari, P., Singh, P., Balwant, R., Engineering, S., & Campus, T. (2014). Seismic early warning alert system. In International Conference on Signal Processing and Integrated Networks (pp. 601–605).Google Scholar
  44. 44.
    Bessis, N., Asimakopoulou, E., French, T., Norrington, P., & Xhafa, F. (2010). The big picture, from grids and clouds to crowds: A data collective computational intelligence case proposal for managing disasters. In Proceedings of the International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC 2010), no. Section II. (pp. 351–356).Google Scholar
  45. 45.
    Bessis, N. (2010). Grid technology for maximizing collaborative decision management and support: Advancing effective virtual organizations. Hershey, PA: IGI Global.Google Scholar
  46. 46.
    Deak, G., Curran, K., Condell, J., Asimakopoulou, E., & Bessis, N. (2013). IoTs (internet of things) and DfPL (device-free passive localisation) in a disaster management scenario. Simulation Modelling Practice and Theory, 35, 86–96.CrossRefGoogle Scholar
  47. 47.
    Khan, F., Bashir, F., & Nakagawa, K. (2012). Dual head clustering scheme in wireless sensor networks. In 2012 International Conference on Emerging Technologies (ICET) (pp. 1–5). Islamabad, Pakistan: IEEE.Google Scholar
  48. 48.
    Yang, L., Yang, S. H., & Plotnick, L. (2013). How the internet of things technology enhances emergency response operations. Technological Forecasting and Social Change, 80(9), 1854–1867.CrossRefGoogle Scholar
  49. 49.
    Fazio, M., Celesti, A., Puliafito, A., & Villari, M. (2014). An integrated system for advanced multi-risk management based on cloud for IoT (pp. 253–269). Cham, Switzerland: Springer.Google Scholar
  50. 50.
    Khan, F. (2014). Secure communication and routing architecture in wireless sensor networks. In 2014 IEEE 3rd Global Conference on Consumer Electronics (GCCE) (pp. 647–650). Tokyo, Japan: IEEE.Google Scholar
  51. 51.
    Jabeen, Q., Khan, F., Khan, S., & Jan, M. A. (2016). Performance improvement in multihop wireless mobile adhoc networks. The Journal Applied, Environmental, and Biological Sciences (JAEBS), 6(4S), 82–92.Google Scholar
  52. 52.
    Du, C., & Zhu, S. (2012). Research on urban public safety emergency management early warning system based on technologies for the internet of things. Procedia Engineering, 45(2011), 748–754.CrossRefGoogle Scholar
  53. 53.
    Wang, J., Tepfenhart, W., & Rosca, D. (2010). Emergency response workflow resource requirements modeling and analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(3), 270–283.CrossRefGoogle Scholar
  54. 54.
    Wang, J., Rosca, D., Tepfenhart, W., Milewski, A., & Stoute, M. (2011). Dynamic workflow modeling and analysis in incident command systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 38(5), 1041–1055.CrossRefGoogle Scholar
  55. 55.
    Tran, T., Yousaf, F. Z., & Wietfeld, C. (2010). RFID based secure mobile communication framework for emergency response management. In Wireless Communications and Networking Conference (WCNC), 2010 IEEE.Google Scholar
  56. 56.
    Aziz, Z., Peña-Mora, F., Chen, A., & Lantz, T. (2012). Supporting urban emergency response and recovery using RFID-based building assessment. Disaster Prevention and Management, 18(1), 35–48.CrossRefGoogle Scholar
  57. 57.
    Fida, N., Khan, F., Jan, M. A., & Khan, Z. (2016, September). Performance analysis of vehicular adhoc network using different highway traffic scenarios in cloud computing. In International Conference on Future Intelligent Vehicular Technologies (pp. 157–166). Cham, Switzerland: Springer.Google Scholar
  58. 58.
    Wickler, G., & Potter, S. (2010). Information-gathering: From sensor data to decision support in three simple steps. Information Systems Journal, 3(1), 1–42.Google Scholar
  59. 59.
    Yang, L., Prasanna, R., & King, M. (2011). On-site information systems design for emergency first responders. Journal of Information Technology Theory and Application, 10(1), 5–27.Google Scholar
  60. 60.
    Du Chunquan, J., Shunbing, Z., & Qiuping, W. (2010). Study and prospect on the application of internet of things in perceiving safety. China Safety Science Journal, 20, 164–170.Google Scholar
  61. 61.
    Alam, M., Ferreira, J., Mumtaz, S., Jan, M. A., Rebelo, R., & Fonseca, J. A. (2017). Smart cameras are making our beaches safer: A 5G-envisioned distributed architecture for safe, connected coastal areas. IEEE Vehicular Technology Magazine, 12(4), 50–59.CrossRefGoogle Scholar
  62. 62.
    Sagun, A., Bouchlaghem, D., & Anumba, C. (2010). A scenario-based study on information flow and collaboration patterns in disaster management. Disasters, 33(2), 214–238.CrossRefGoogle Scholar
  63. 63.
    Shaluf, I. M. (2011). Technological disaster stages and management. Disaster Prevention and Management, 17(1), 114–126.CrossRefGoogle Scholar
  64. 64.
    Zelenkauskaite, A., Bessis, N., Sotiriadis, S., & Asimakopoulou, E. (2012). Disaster management and profile modelling of IoT objects: Conceptual parameters for interlinked objects in relation to social network analysis. In Proceedings of the 2012 International Conference on Intelligent Networking and Collaborative Systems (INCoS 2012) (pp. 509–514).Google Scholar
  65. 65.
    Shamszaman, Z. U., Ara, S. S., Chong, I., & Jeong, Y. K. (2014). Web-of-objects (WoO)-based context aware emergency fire management systems for the internet of things. Sensors (Switzerland), 14(2), 2944–2966.CrossRefGoogle Scholar
  66. 66.
    Adomavicius, G., & Tuzhilin, A. (2010). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749.CrossRefGoogle Scholar
  67. 67.
    Han, S. N., Lee, G. M., & Crespi, N. (2014). Semantic context-aware service composition for building automation system. IEEE Transactions on Industrial Informatics, 10(1), 252–261.CrossRefGoogle Scholar
  68. 68.
    Xu, R., Yang, L., & Yang, S.-H. (2013). Architecture design of internet of things in logistics management for emergency response. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 395–402).Google Scholar
  69. 69.
    Yang, H., Yang, L., & Yang, S. (2011). Hybrid Zigbee RFID sensor network for humanitarian logistics Centre management. Journal of Network and Computer Applications, 34(3), 938–948.CrossRefGoogle Scholar
  70. 70.
    Fajardo, J. T. B., & Oppus, C. M. (2011). A mobile disaster management system using the andriod technology. International Journal of Communication, 3(3), 77–86.Google Scholar
  71. 71.
    Walle, B., Eede, G. V., & Muhren, W. (2010). Humanitarian information management and systems, mobile response. In Second International Workshop on Mobile Information Technology for Emergency Response 2008, Bonn, Germany, May 29–38, 2008. Revised Selected Papers. Cham, Switzerland: Springer.Google Scholar
  72. 72.
    Akhunzada, A., Gani, A., Anuar, N. B., Abdelaziz, A., Khan, M. K., Hayat, A., et al. (2016). Secure and dependable software defined networks. Journal of Network and Computer Applications, 61, 199–221.CrossRefGoogle Scholar
  73. 73.
    Akhunzada, A., Sookhak, M., Anuar, N. B., Gani, A., Ahmed, E., Shiraz, M., et al. (2015). Man-at-the-end attacks: Analysis, taxonomy, human aspects, motivation and future directions. Journal of Network and Computer Applications, 48, 44–57.CrossRefGoogle Scholar
  74. 74.
    Sookhak, M., Gani, A., Talebian, H., Akhunzada, A., Khan, S. U., Buyya, R., et al. (2015). Remote data auditing in cloud computing environments: A survey, taxonomy, and open issues. ACM Computing Surveys (CSUR), 47(4), 65.CrossRefGoogle Scholar
  75. 75.
    Alam, K. A., Ahmad, R., Akhunzada, A., Nasir, M. H. N. M., & Khan, S. U. (2015). Impact analysis and change propagation in service-oriented enterprises: A systematic review. Information Systems, 54, 43–73.CrossRefGoogle Scholar
  76. 76.
    Al-Turjman, F. (2017). Cognitive routing protocol for disaster-inspired internet of things. Future Generation Computer Systems.Google Scholar
  77. 77.
    Cheng, J. W., & Mitomo, H. (2017). The underlying factors of the perceived usefulness of using smart wearable devices for disaster applications. Telematics and Informatics, 34(2), 528–539.CrossRefGoogle Scholar
  78. 78.
    Kamruzzaman, M., Sarkar, N. I., Gutierrez, J., & Ray, S. K. (2017). A study of IoT-based post-disaster management. In 2017 International Conference on Information Networking (ICOIN). Piscataway, NJ: IEEE.Google Scholar
  79. 79.
    Choe, S., Park, J., Han, S., Park, J., & Yun, H. (2017). A study on the real-time management and monitoring process for recovery resources using internet of things. International Research Journal of Engineering and Technology (IRJET), 04(3).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Umara Zafar
    • 1
  • Munam Ali Shah
    • 1
  • Abdul Wahid
    • 1
    Email author
  • Adnan Akhunzada
    • 1
  • Shahan Arif
    • 1
  1. 1.COMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations