Skip to main content

Germanene: Silicene’s Twin Sister

  • Chapter
  • First Online:
Silicene

Abstract

Soon after the discovery of graphene, the first two-dimensional material, many other two-dimensional materials have been developed. Due to their \(s^{2}p^{2}\) type of electronic structure the elements of the ‘carbon’ column of the periodic system i.e. silicon, germanium and tin have received a lot of attention as potential two-dimensional materials. The silicon, germanium and tin analogues of graphene are coined silicene, germanene and tinene or stanene, respectively, and share many properties with graphene. There are, however, also a few distinct differences with graphene. Here we will give a brief update on the current status of germanene. We briefly review the various routes to synthesize germanene and elaborate on its structural and electronic properties as well as its potential for application in future electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mat. 6, 183 (2007)

    Article  Google Scholar 

  3. N.D. Mermin, Phys. Rev. 176, 250 (1968)

    Article  ADS  Google Scholar 

  4. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, G. Le Lay, Appl. Phys. Lett. 96, 183102 (2010)

    Article  ADS  Google Scholar 

  5. P. De Padova, C. Quaresima, C. Ottaviani, P.M. Sheverdyaeva, P. Moras, C. Carbonne, D. Topwal, B. OLivieri, A. Kara, H. Oughaddou, B. Aufray and G. Le Lay. Appl. Phys. Lett. 96, 261905 (2010)

    Article  ADS  Google Scholar 

  6. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G.L. Lay, Phys. Rev. Lett. 108, 155501 (2012)

    Article  ADS  Google Scholar 

  7. C.-C. Liu, H. Jiang, Y. Yao, Phys. Rev. B 84, 195430 (2011)

    Article  ADS  Google Scholar 

  8. Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, Z. Zhang, Phys. Rev. B. 75, 041401 (2007)

    Article  ADS  Google Scholar 

  9. C.-C. Liu, W. Feng, Y. Yao, Phys. Rev. Lett. 107, 076802 (2011)

    Article  ADS  Google Scholar 

  10. K. Takeda, K. Shiraishi, Phys. Rev. B 50, 14916 (1994)

    Article  ADS  Google Scholar 

  11. G.G. Guzmán-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007)

    Article  ADS  Google Scholar 

  12. S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  13. A. Acun, L. Zhang, P. Bampoulis, M. Farmanbar, M. Lingenfelder, A. van Houselt, A.N. Rudenko, G. Brocks, B. Poelsema, M.I. Katsnelson, H.J.W. Zandvliet, J. Phys. Condens. Matter 27, 443002 (2015)

    Article  Google Scholar 

  14. E. Bianco, S. Butler, S. Jiang, O.D. Restrepo, W. Windl, J.E. Golberger, ACS Nano 7, 4414 (2013)

    Article  Google Scholar 

  15. L. Li, S.-Z. Lu, J. Pan, Z. Qin. Y.-Q. Wang, Y. Wang, G. Cao, S. Du, H.-J. Gao, Adv. Mater. 26, 4820 (2014)

    Article  Google Scholar 

  16. M. Švec, P. Hapala, M. Ondráček, P. Merino, M. Blanco-Rey, P. Mutombo, M. Vondráček, Y. Polyak, V. Cháb, J.A. Martín, Gago, P. Jelínek, Phys. Rev. B 89, 201412(R) (2014)

    Article  ADS  Google Scholar 

  17. M.E. Dávila, L. Xian, S. Cahangirov, A. Rubio, G. Le Lay, New J. Phys. 16, 095002 (2014)

    Article  ADS  Google Scholar 

  18. P. Bampoulis, L. Zhang, A. Safaei, R. van Gastel, B. Poelsema, H.J.W. Zandvliet, J. Phys. Condens. Matter 26, 442001 (2014)

    ADS  Google Scholar 

  19. M. Derivaz, D. Dentel, R. Stephan, M.-C. Hanf, A. Mehdaoui, P. Sonnet, C. Pirri, Nano Lett. 15, 2510 (2015)

    Article  ADS  Google Scholar 

  20. L. Zhang, P. Bampoulis, A. van Houselt, H.J.W. Zandvliet, Appl. Phys. Lett. 107, 111605 (2015)

    Article  ADS  Google Scholar 

  21. M.E. Dávila, G. Le Lay, Sci. Rep. 6, 20714 (2016)

    Article  ADS  Google Scholar 

  22. L. Zhang, P. Bampoulis, A.N. Rudenko, Q. Yao, A. van Houselt, B. Poelsema, M.I. Katsnelson, H.J.W. Zandvliet, Phys. Rev. Lett. 116 (2016)

    Google Scholar 

  23. T. Amlaki, M. Bokdam, P.J. Kelly, Phys. Rev. Lett. 116 (2016)

    Google Scholar 

  24. C.J. Walhout, A. Acun, L. Zhang, M. Ezawa, H.J.W. Zandvliet, J. Phys. Condens. Matter 28, 284006 (2016)

    Article  Google Scholar 

  25. M.I. Katsnelson, Graphene: Carbon in Two Dimensions (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  26. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  27. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  28. M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Science 318, 766 (2007)

    Article  ADS  Google Scholar 

  29. M. Ezawa, New J. Phys. 16, 065015 (2012)

    Article  Google Scholar 

  30. M. Ezawa, Eur. Phys. J. B 86, 139 (2013)

    Article  ADS  Google Scholar 

  31. M. Ezawa, Phys. Rev. Lett. 109, 055502 (2012)

    Article  ADS  Google Scholar 

  32. M. Ezawa, Phys. Rev. Lett. 110, 026603 (2013)

    Article  ADS  Google Scholar 

  33. N.D. Drummond, V. Zólyomi, V.I. Fal’ko, Phys. Rev. B 85, 075423 (2012)

    Google Scholar 

  34. M. Ezawa, New J. Phys. 14, 033003 (2012)

    Article  ADS  Google Scholar 

  35. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko, Science 335, 947 (2012)

    Article  ADS  Google Scholar 

  36. T.P. Kaloni, G. Schreckenbach, M.S. Freund, J. Phys. Chem. C 118, 25200 (2014)

    Article  Google Scholar 

  37. T.P. Kaloni, U. Schwingenschlögl, Chem. Phys. Lett. 583, 137 (2013)

    Article  ADS  Google Scholar 

  38. J.A. Yan, S.-P. Gao, R. Stein, G. Coard, Phys. Rev. B 91, 245401 (2015)

    Article  ADS  Google Scholar 

  39. P. Zhou, L.Z. Sun, Sci. Rep. 6, 27830 (2016)

    Article  ADS  Google Scholar 

  40. H.J.W. Zandvliet, Nano Today 9, 691 (2014)

    Article  Google Scholar 

  41. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nanotechnol. 10, 227 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PB and AA thank the Nederlandse Organisatie voor Wetenschappelijk Onderzoek for financial support. LZ and QY thank the China Scholarship Council for financial support and RB and HJWZ thank the stichting voor Fundamenteel Onderzoek der Materie for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold J. W. Zandvliet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bampoulis, P. et al. (2018). Germanene: Silicene’s Twin Sister. In: Vogt, P., Le Lay, G. (eds) Silicene. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99964-7_13

Download citation

Publish with us

Policies and ethics