Advertisement

Diagnostics of Trains with Semantic Diagnostics Rules

  • Evgeny Kharlamov
  • Ognjen SavkovićEmail author
  • Martin Ringsquandl
  • Guohui Xiao
  • Gulnar Mehdi
  • Elem Güzel Kalayc
  • Werner Nutt
  • Mikhail Roshchin
  • Ian Horrocks
  • Thomas Runkler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11105)

Abstract

Industry today employs rule-based diagnostic systems to minimize the maintenance cost and downtime of equipment. Rules are typically used to process signals from sensors installed in equipment by filtering, aggregating, and combining sequences of time-stamped measurements recorded by the sensors. Such rules are often data-dependent in the sense that they rely on specific characteristics of individual sensors and equipment. This dependence poses significant challenges in rule authoring, reuse, and maintenance by engineers especially when the rules require domain knowledge. In this work we propose an approach to address these problems by relying on the well-known Ontology-Based Data Access approach: we propose to use ontologies to mediate the sensor signals and the rules. To this end, we propose a semantic rule language, SDRL, where signals are first class citizens. Our language offers a balance of expressive power, usability, and efficiency: it captures most of Siemens data-driven diagnostic rules, significantly simplifies authoring of diagnostic tasks, and allows to efficiently rewrite semantic rules from ontologies to data and execute over data. We implemented our approach in a semantic diagnostic system and evaluated it. For evaluation we developed a use case of rail systems at Siemens and conducted experiments to demonstrate both usability and efficiency of our solution.

Notes

Acknowledgments

This research is partially supported by the Free University of Bozen-Bolzano projects QUEST, ROBAST and QUADRO.

References

  1. 1.
    Artale, A., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: The complexity of clausal fragments of LTL. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 35–52. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45221-5_3CrossRefGoogle Scholar
  2. 2.
    Artale, A., Kontchakov, R., Wolter, F., Zakharyaschev, M.: Temporal description logic for ontology-based data access. In: IJCAI 2013 (2013)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds).: The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)Google Scholar
  4. 4.
    Brandt, S., Kalaycı, E., Kontchakov, R., Ryzhikov, V., Xiao, G., Zakharyaschev, M.: Ontology-based data access with a horn fragment of metric temporal logic. In: AAAI (2017)Google Scholar
  5. 5.
    Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases. JWS 8(3), 471–487 (2017)Google Scholar
  6. 6.
    Calvanese, D., et al.: The MASTRO system for ontology-based data access. JWS 2(1), 43–53 (2011)Google Scholar
  7. 7.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-lite family. JAR 39(3), 385–429 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Charron, B., Hirate, Y., Purcell, D., Rezk, M.: Extracting semantic information for e-Commerce. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 273–290. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46547-0_27
  9. 9.
    Corcho, O., Calbimonte, J., Jeung, H., Aberer, K.: Enabling query technologies for the semantic sensor web. Int. J. Semant. Web Inf. Syst. 8(1), 43–63 (2012)CrossRefGoogle Scholar
  10. 10.
    Horrocks, I., Giese, M., Kharlamov, E., Waaler, A.: Using semantic technology to tame the data variety challenge. IEEE Int. Comput. 20(6), 62–66 (2016)CrossRefGoogle Scholar
  11. 11.
    Kharlamov, E.: Ontology based access to exploration data at statoil. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 93–112. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25010-6_6
  12. 12.
    Kharlamov, E.: Optique: towards OBDA systems for industry. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS, vol. 7955, pp. 125–140. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41242-4_11CrossRefGoogle Scholar
  13. 13.
    Kharlamov, E.: How semantic technologies can enhance data access at siemens energy. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 601–619. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11964-9_38
  14. 14.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  15. 15.
    Mehdi, G., Brandt, S., Roshchin, M., Runkler, T.A.: Semantic framework for industrial analytics and diagnostics. In: IJCAI (2016)Google Scholar
  16. 16.
    Mehdi, G., Brandt, S., Roshchin, M., Runkler, T.A.: Towards semantic reasoning in knowledge management systems. In: AI for Knowledge Management Workshop at IJCAI (2016)Google Scholar
  17. 17.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)zbMATHGoogle Scholar
  18. 18.
    Rao, B.: Handbook of Condition Monitoring. Elsevier, Oxford (1996)Google Scholar
  19. 19.
    Vachtsevanos, G., Lewis, F.L., Roemer, M., Hess, A., Wu, B.: Intelligent Fault Diagnosis and Prognosis for Engineering Systems. Wiley, Hoboken (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Evgeny Kharlamov
    • 1
  • Ognjen Savković
    • 2
    Email author
  • Martin Ringsquandl
    • 3
  • Guohui Xiao
    • 2
  • Gulnar Mehdi
    • 3
  • Elem Güzel Kalayc
    • 2
  • Werner Nutt
    • 2
  • Mikhail Roshchin
    • 3
  • Ian Horrocks
    • 1
  • Thomas Runkler
    • 3
  1. 1.University of OxfordOxfordUK
  2. 2.Free University of Bozen-BolzanoBolzanoItaly
  3. 3.Siemens AG, Corporate TechnologyMunichGermany

Personalised recommendations