Advertisement

Automated Immunohistochemical Stains Analysis for Computer-Aided Diagnosis of Parathyroid Disease

  • Bartłomiej PłaczekEmail author
  • Marcin Lewandowski
  • Rafał Bułdak
  • Marek Michalski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11127)

Abstract

Parathyroid disease has a huge impact on overall health and quality of life. Immunohistochemistry (IHC) is a biological technique, which is useful in diagnosis and prognosis of the parathyroid disorders. The use of IHC as a diagnostic tool brings a substantial methodological problem related to evaluation of stain intensity in micrographs. This paper introduces an image processing approach for automatic IHC stain analysis in micrographs of parathyroid tissue. The introduced approach can be used for computer-aided diagnosis of parathyroid disease as well as for medical research studies in this field. The main novelty of this approach lays in the combination of color deconvolution procedure with a parathyroid cell nuclei localization algorithm, which is based on custom image filtering and circular objects recognition. Accuracy of the proposed approach was verified by comparison with results of experts’ evaluation in experiments conducted on micrographs of healthy tissue, adenomas, and hyperplasias with various IHC markers.

Keywords

Image processing Immunohistochemistry Hyperparathyroidism Light microscopy 

References

  1. 1.
    Pathak, S., Joshi, S.R.: Basics of immunohistochemistry. J. Investig. Dermatol. 135, e30 (2015).  https://doi.org/10.1038/jid.2014.541CrossRefGoogle Scholar
  2. 2.
    Dabbs, D.J.: Diagnostic Immunohistochemistry: Theranostic and Genomic Applications, 4th edn. Saunders, Philadelphia (2013)Google Scholar
  3. 3.
    Kaczmarek, E., Górna, A., Majewski, P.: Techniques of image analysis for quantitative immunohistochemistry. Ann. Acad. Medicae Bialostoc. 49, 155–158 (2004)Google Scholar
  4. 4.
    Wesołowski, T., Wróbel, K.: A computational assessment of a blood vessel’s roughness. In: Burdu, R., Jackowski, K., Kurzynski, M., Wozniak, M., Zolnierek, A. (eds.) Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. AISC, vol. 226, pp. 227–236. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-319-00969-8_22
  5. 5.
    Wrobel, K., Doroz, R., Palys, M.: A method of lip print recognition based on sections comparison. In: Proceedings of International Conference on Biometrics and Kansei Engineering ICBAKE 2013, pp. 47–52. IEEE Computer Society, Tokyo (2013)Google Scholar
  6. 6.
    Prasad, K., Prabhu, G.K.: Image analysis tools for evaluation of microscopic views of immunohistochemically stained specimen in medical research-a review. J. Med. Syst. 36(4), 2621–2631 (2012)CrossRefGoogle Scholar
  7. 7.
    Brey, E.M., et al.: Automated selection of DAB-labeled tissue for immunohistochemical quantification. J. Histochem. Cytochem. 51(5), 575–584 (2003)CrossRefGoogle Scholar
  8. 8.
    Dong, J., Li, J., Fu, A., Lv, H.: Automatic segmentation for Ovarian Cancer immunohistochemical image based on YUV color space. In: Muchin, V.E., Hu, Z. (eds.) International Conference on Biomedical Engineering and Computer Science ICBECS 2010, pp. 750–753. IEEE, New York (2010)Google Scholar
  9. 9.
    Pham, N.A., et al.: Quantitative image analysis of immunohistochemical stains using a CMYK color model. Diagn. Pathol. 2(1), 8 (2007)CrossRefGoogle Scholar
  10. 10.
    Varghese, F., Bukhari, A.B., Malhotra, R., De, A.: IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PloS ONE 9(5), e96801 (2014)CrossRefGoogle Scholar
  11. 11.
    Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)Google Scholar
  12. 12.
    Tadrous, P.J.: Digital stain separation for histological images. J. Microsc. 240(2), 164–172 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Wang, R., Pokhariya, H., McKenna, S.J., Lucocq, J.: Recognition of immunogold markers in electron micrographs. J. Struct. Biol. 176(2), 151–158 (2011)CrossRefGoogle Scholar
  15. 15.
    Atherton, T.J., Kerbyson, D.J.: Size invariant circle detection. Image Vis. Comput. 17(11), 795–803 (1999)CrossRefGoogle Scholar
  16. 16.
    Kłos-Witkowska, A.: The phenomenon of fluorescence in immunosensors. Acta Biochimica Polonica 63(2), 215 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bartłomiej Płaczek
    • 1
    Email author
  • Marcin Lewandowski
    • 1
  • Rafał Bułdak
    • 2
    • 3
  • Marek Michalski
    • 4
  1. 1.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland
  2. 2.Department of Physiology, School of Medicine with the Division of DentistryUniversity of SilesiaZabrzePoland
  3. 3.Department of Human Nutrition, School of Public HealthMedical University of SilesiaZabrzePoland
  4. 4.Department of Histology and Embryology, School of Medicine with the Division of DentistryMedical University of SilesiaZabrzePoland

Personalised recommendations