Advertisement

Deep Neural Network for Whole Slide Vein Segmentation

  • Bartosz Miselis
  • Michał Kulus
  • Tomasz Jurek
  • Andrzej Rusiecki
  • Łukasz JeleńEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11127)

Abstract

Semantic segmentation of medical images is an area of active research all over the world. It can dramatically improve accuracy and efficiency of diagnosis if used properly. High reliability of potential solutions is required to support specialists. In this work we introduce a novel solution to perform pixelwise segmentation of vein preparations dyed with movat stain. Our proposed deep convolutional neural network achieves the accuracy of \(89\%\).

Keywords

Movat Deep neural networks Deep learning Whole slide segmentation Image processing Computer aided diagnosis 

Notes

Acknowledgements

Images used in this study are a courtesy of the Histology and Embryology Division, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland.

References

  1. 1.
    Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). www.tensorflow.org
  2. 2.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561 (2015)
  3. 3.
    Chen, H., Qi, X., Yu, L., Heng, P.-A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)Google Scholar
  4. 4.
    Ying Chen, J.D., Argentinis, E., Weber, G.: IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research. Clin. Ther. 38(4), 688–701 (2016)CrossRefGoogle Scholar
  5. 5.
    Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 2843–2851 (2012)Google Scholar
  6. 6.
    He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. IEEE (2017)Google Scholar
  7. 7.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)Google Scholar
  8. 8.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)Google Scholar
  9. 9.
    Kingma, D., Adam, J.B.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
  10. 10.
    Liu, Y., et al.: Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442 (2017)
  11. 11.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)Google Scholar
  12. 12.
    Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1520–1528 (2015)Google Scholar
  13. 13.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28CrossRefGoogle Scholar
  14. 14.
    Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for convolutional neural networks applied to visual document analysis. ICDAR 3, 958–962 (2003)Google Scholar
  15. 15.
    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)Google Scholar
  16. 16.
    Wang, D., Khosla, A., Gargeya, R., Irshad, H., Beck, A.H.: Deep learning for identifying metastatic breast cancer. arXiv preprint arXiv:1606.05718 (2016)

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bartosz Miselis
    • 1
  • Michał Kulus
    • 2
  • Tomasz Jurek
    • 3
  • Andrzej Rusiecki
    • 1
  • Łukasz Jeleń
    • 1
    Email author
  1. 1.Department of Computer EngineeringWrocław University of Science and TechnologyWrocławPoland
  2. 2.Histology and Embryology Division, Department of Human Morphology and EmbryologyWrocław Medical UniversityWrocławPoland
  3. 3.Department of Forensic MedicineWrocław Medical UniversityWrocławPoland

Personalised recommendations