Advertisement

Cooperation in Clusters: A Study Case in the Furniture Industry in Colombia

  • Daniela Landinez Lamadrid
  • Diana Ramirez Rios
  • Dionicio Neira RodadoEmail author
  • Fernando Crespo
  • Luis Ramirez
  • Miguel Jimenez
  • William Manjarres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11127)

Abstract

Cooperation is increasingly been used in the industrial sector because of its benefits. This have motivated companies to establish alliances and agreements with others in order to reduce cost or access new markets, for example. In the literature, we could find many works aimed at cooperation in supply chains. A smaller amount was focused at cluster cooperation and few of them propose methodologies or models to facilitate the development and implementation of cooperation in industrial clusters. This paper provides a methodology for cooperation in clusters, which was applied to the furniture industry of Atlántico region in Colombia. Shapley value was used in order to evaluate the different coalitions and to split the benefits obtained with these coalitions. The methodology is useful for cluster members in order to encourage the formation of alliances within the cluster in order to overcome the prevailing mistrust, strengthening the cluster and gaining competitiveness.

Keywords

Game theory Supply chain Shapley value Clusters Cooperation 

Notes

Acknowledgments

This research was funded by COLCIENCIAS, through the project 2333-6694-6964. This work was developed by Universidad de la Costa (CUC) and Fundación Centro de Investigación en Modelación Empresarial del Caribe (FCIMEC).

References

  1. 1.
    Atencio, F.N., Rodado, D.N.: A Sule’s Method initiated genetic algorithm for solving QAP formulation in facility layout design: a real world application. J. Theoret. Appl. Inf. Technol. 84(2) (2016)Google Scholar
  2. 2.
    Neira Rodado, D., Escobar, J.W., García-Cáceres, R.G., Niebles Atencio, F.A.: A mathematical model for the product mixing and lot-sizing problem by considering stochastic demand. Int. J. Ind. Eng. Comput. 8(2), 237–250 (2016). http://doi.org/10.5267/j.ijiec.2016.9.003
  3. 3.
    Porter, M.E.: Location, competition, and economic development: local clusters in a global economy. Econ. Dev. Q. 14(1), 15–34 (2000)CrossRefGoogle Scholar
  4. 4.
    Patti, A.L.: Economic clusters and the supply chain: a case study. Supply Chain Manag. Int. J. 11(3), 266–270 (2006)CrossRefGoogle Scholar
  5. 5.
    Capó-Vicedo, J., Expósito-Langa, M., Masiá-Buades, E.: La importancia de los clusters para la competitividad de las PYME en una economía global. EURE (Santiago) 33(98), 119–133 (2007)CrossRefGoogle Scholar
  6. 6.
    Landinez-Lamadrid, D.C., Ramirez-Rios, D.G., Neira Rodado, D., Parra Negrete, K., Combita Nino, J.P.: Shapley value: its algorithms and application to supply chains. INGE CUC 13(1), 61–69 (2017)CrossRefGoogle Scholar
  7. 7.
    Guo, Y.: A game analysis of cooperative relationship between enterprises on supply chain. Res. Pract. Issues Enterp. Inf. Syst. II, 1319–1323 (2008)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Daniela Landinez Lamadrid
    • 1
  • Diana Ramirez Rios
    • 1
    • 2
  • Dionicio Neira Rodado
    • 3
    Email author
  • Fernando Crespo
    • 4
  • Luis Ramirez
    • 1
  • Miguel Jimenez
    • 3
  • William Manjarres
    • 5
  1. 1.Fundación Centro de Investigación en Modelación Empresarial del CaribeBarranquillaColombia
  2. 2.Rensselaer Polytechnic InstituteTroyUSA
  3. 3.Universidad de la Costa CUCBarranquillaColombia
  4. 4.Universidad MayorSantiagoChile
  5. 5.Universidad del AtlánticoBarranquillaColombia

Personalised recommendations