Advertisement

Medical Management of TMD

  • Rebeka G. SilvaEmail author
  • Valeria Gerloni
  • S. Thaddeus Connelly
Chapter

Abstract

Understanding how to use medical management to address temporomandibular disorders pain is an essential component of the provider’s armamentarium. Patients who benefit from medical management include those with a wide variety of acute and chronic diagnoses, encompassing intra-articular and extra-articular disorders, as well as the postsurgical patient. This chapter covers selected medication categories and minimally invasive interventions that go beyond the first-line advice of soft diet and warm compresses.

Keywords

Temporomandibular disorder Medical Drugs Botox Rheumatologic 

References

  1. 1.
    Mejersjo C, Wenneberg B. Diclofenac sodium and occlusal splint therapy in TMJ osteoarthritis: a randomized controlled trial. J Oral Rehabil. 2008;35(10):729–38.PubMedCrossRefGoogle Scholar
  2. 2.
    Brater DC, Harris C, Redfern JS, Gertz BJ. Renal effects of COX-2-selective inhibitors. Am J Nephrol. 2001;21(1):1–15.PubMedCrossRefGoogle Scholar
  3. 3.
    Curtis SP, Ng J, Yu Q, Shingo S, Bergman G, McCormick CL, et al. Renal effects of etoricoxib and comparator nonsteroidal anti-inflammatory drugs in controlled clinical trials. Clin Ther. 2004;26(1):70–83.PubMedCrossRefGoogle Scholar
  4. 4.
    Hersh EV, Moore PA, Ross GL. Over-the-counter analgesics and antipyretics: a critical assessment. Clin Ther. 2000;22(5):500–48.PubMedCrossRefGoogle Scholar
  5. 5.
    Bi RY, Ding Y, Gan YH. Non-steroidal anti-inflammatory drugs attenuate hyperalgesia and block upregulation of trigeminal ganglionic sodium channel 1.7 after induction of temporomandibular joint inflammation in rats. Chin J Dent Res. 2016;19(1):35–42.PubMedGoogle Scholar
  6. 6.
    Su SC, Tanimoto K, Tanne Y, Kunimatsu R, Hirose N, Mitsuyoshi T, et al. Celecoxib exerts protective effects on extracellular matrix metabolism of mandibular condylar chondrocytes under excessive mechanical stress. Osteoarthr Cartil. 2014;22(6):845–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Kawashima M, Ogura N, Akutsu M, Ito K, Kondoh T. The anti-inflammatory effect of cyclooxygenase inhibitors in fibroblast-like synoviocytes from the human temporomandibular joint results from the suppression of PGE2 production. J Oral Pathol Med. 2013;42(6):499–506.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Ta LE, Dionne RA. Treatment of painful temporomandibular joints with a cyclooxygenase-2 inhibitor: a randomized placebo-controlled comparison of celecoxib to naproxen. Pain. 2004;111(1–2):13–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Trelle S, Reichenbach S, Wandel S, Hildebrand P, Tschannen B, Villiger PM, et al. Cardiovascular safety of non-steroidal anti-inflammatory drugs: network meta-analysis. BMJ. 2011;342:c7086.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Munoz Olmo L, Juan Armas J, Gomariz Garcia JJ. [Risk of fatal/non-fatal events in patients with previous coronary heart disease/acute myocardial infarction and treatment with non-steroidal anti-inflammatory drugs]. Semergen. 2018;44(5):355–63.Google Scholar
  11. 11.
    Buttgereit F, Burmester GR, Simon LS. Gastrointestinal toxic side effects of nonsteroidal anti-inflammatory drugs and cyclooxygenase-2-specific inhibitors. Am J Med. 2001;110(Suppl 3A):13S–9S.PubMedCrossRefGoogle Scholar
  12. 12.
    Heymann MA. Non-narcotic analgesics. Use in pregnancy and fetal and perinatal effects. Drugs. 1986;32(Suppl 4):164–76.PubMedCrossRefGoogle Scholar
  13. 13.
    Analgesics for Osteoarthritis: An update of the 2006 comparative effectiveness review. Comparative effectiveness review no. 38. Rockville: Agency for Healthcare Research and Quality, U.S. Department of Health and Human Services (prepared by the Oregon evidence-based practice center under contract no. HHSA 290 2007 10057 I); October 2011.Google Scholar
  14. 14.
    Rollason V, Samer CF, Daali Y, Desmeules JA. Prediction by pharmacogenetics of safety and efficacy of non-steroidal anti-inflammatory drugs: a review. Curr Drug Metab. 2014;15(3):326–43.PubMedCrossRefGoogle Scholar
  15. 15.
    Coleman CI, Limone B, Sobieraj DM, Lee S, Roberts MS, Kaur R, et al. Dosing frequency and medication adherence in chronic disease. J Manag Care Pharm. 2012;18(7):527–39.PubMedGoogle Scholar
  16. 16.
    Bingham CO 3rd, Smugar SS, Wang H, Tershakovec AM. Early response to COX-2 inhibitors as a predictor of overall response in osteoarthritis: pooled results from two identical trials comparing etoricoxib, celecoxib and placebo. Rheumatology (Oxford). 2009;48(9):1122–7.CrossRefGoogle Scholar
  17. 17.
    Chichorro JG, Porreca F, Sessle B. Mechanisms of craniofacial pain. Cephalalgia. 2017;37(7):613–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Sipahi A, Satilmis T, Basa S. Comparative study in patients with symptomatic internal derangements of the temporomandibular joint: analgesic outcomes of arthrocentesis with or without intra-articular morphine and tramadol. Br J Oral Maxillofac Surg. 2015;53(4):316–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Ziegler CM, Wiechnik J, Muhling J. Analgesic effects of intra-articular morphine in patients with temporomandibular joint disorders: a prospective, double-blind, placebo-controlled clinical trial. J Oral Maxillofac Surg. 2010;68(3):622–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Prager TM, Mischkowski RA, Zoller JE. Effect of intra-articular administration of buprenorphine after arthrocentesis of the temporomandibular joint: a pilot study. Quintessence Int. 2007;38(8):e484–9.PubMedGoogle Scholar
  21. 21.
    Zuniga JR, Ibanez C, Kozacko M. The analgesic efficacy and safety of intra-articular morphine and mepivicaine following temporomandibular joint arthroplasty. J Oral Maxillofac Surg. 2007;65(8):1477–85.PubMedCrossRefGoogle Scholar
  22. 22.
    Christoph T, Kogel B, Strassburger W, Schug SA. Tramadol has a better potency ratio relative to morphine in neuropathic than in nociceptive pain models. Drugs R D. 2007;8(1):51–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Cepeda MS, Camargo F, Zea C, Valencia L. Tramadol for osteoarthritis: a systematic review and metaanalysis. J Rheumatol. 2007;34(3):543–55.PubMedGoogle Scholar
  24. 24.
    Fricke JR Jr, Hewitt DJ, Jordan DM, Fisher A, Rosenthal NR. A double-blind placebo-controlled comparison of tramadol/acetaminophen and tramadol in patients with postoperative dental pain. Pain. 2004;109(3):250–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Beutler B. TNF immunity and inflammatory disease: lessons of the past decade. J Investig Med. 1995;43(3):227–35.PubMedGoogle Scholar
  26. 26.
    Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature. 1986;319(6053):516–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Saklatvala J. Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature. 1986;322(6079):547–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Maini RN. The role of cytokines in rheumatoid arthritis. The Croonian Lecture 1995. J R Coll Physicians Lond. 1996;30(4):344–51.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Feldmann M, Elliott MJ, Woody JN, Maini RN. Anti-tumor necrosis factor-alpha therapy of rheumatoid arthritis. Adv Immunol. 1997;64:283–350.PubMedCrossRefGoogle Scholar
  30. 30.
    Dayer JM, Beutler B, Cerami A. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med. 1985;162(6):2163–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Cavender D, Saegusa Y, Ziff M. Stimulation of endothelial cell binding of lymphocytes by tumor necrosis factor. J Immunol. 1987;139(6):1855–60.PubMedGoogle Scholar
  32. 32.
    Butcher EC. Warner-Lambert/Parke-Davis Award lecture. Cellular and molecular mechanisms that direct leukocyte traffic. Am J Pathol. 1990;136(1):3–11.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Brennan FM, Chantry D, Jackson A, Maini R, Feldmann M. Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet. 1989;2(8657):244–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Catrina AI, Lampa J, Ernestam S, af Klint E, Bratt J, Klareskog L, et al. Anti-tumour necrosis factor (TNF)-alpha therapy (etanercept) down-regulates serum matrix metalloproteinase (MMP)-3 and MMP-1 in rheumatoid arthritis. Rheumatology (Oxford). 2002;41(5):484–9.CrossRefGoogle Scholar
  35. 35.
    Ma X, Xu S. TNF inhibitor therapy for rheumatoid arthritis. Biomed Rep. 2013;1(2):177–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Fredriksson L, Alstergren P, Kopp S. Tumor necrosis factor-alpha in temporomandibular joint synovial fluid predicts treatment effects on pain by intra-articular glucocorticoid treatment. Mediat Inflamm. 2006;2006(6):59425.Google Scholar
  37. 37.
    Lamazza L, Guerra F, Pezza M, Messina AM, Galluccio A, Spink M, et al. The use of etanercept as a non-surgical treatment for temporomandibular joint psoriatric arthritis: a case report. Aust Dent J. 2009;54(2):161–5.PubMedCrossRefGoogle Scholar
  38. 38.
    Quartier P, Tournilhac O, Archimbaud C, Lazaro L, Chaleteix C, Millet P, et al. Enteroviral meningoencephalitis after anti-CD20 (rituximab) treatment. Clin Infect Dis. 2003;36(3):e47–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Gerloni V, Pontikaki I, Gattinara M, Fantini F. Focus on adverse events of tumour necrosis factor alpha blockade in juvenile idiopathic arthritis in an open monocentric long-term prospective study of 163 patients. Ann Rheum Dis. 2008;67(8):1145–52.PubMedCrossRefGoogle Scholar
  40. 40.
    Dekker L, Armbrust W, Rademaker CM, Prakken B, Kuis W, Wulffraat NM. Safety of anti-TNFalpha therapy in children with juvenile idiopathic arthritis. Clin Exp Rheumatol. 2004;22(2):252–8.PubMedGoogle Scholar
  41. 41.
    Hochberg MC, Lebwohl MG, Plevy SE, Hobbs KF, Yocum DE. The benefit/risk profile of TNF-blocking agents: findings of a consensus panel. Semin Arthritis Rheum. 2005;34(6):819–36.PubMedCrossRefGoogle Scholar
  42. 42.
    Romano M, Pontikaki I, Gattinara M, Ardoino I, Donati C, Boracchi P, et al. Drug survival and reasons for discontinuation of the first course of biological therapy in 301 juvenile idiopathic arthritis patients. Reumatismo. 2014;65(6):278–85.PubMedCrossRefGoogle Scholar
  43. 43.
    Tynjala P, Vahasalo P, Honkanen V, Lahdenne P. Drug survival of the first and second course of anti-tumour necrosis factor agents in juvenile idiopathic arthritis. Ann Rheum Dis. 2009;68(4):552–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Ilowite NT, Laxer RM. Pharmacology: biologics. Textbook of pediatric rheumatology. 7th ed. Philadelphia: Elsevier; 2016. p. 161–75.CrossRefGoogle Scholar
  45. 45.
    Niibo P, Pruunsild C, Voog-Oras U, Nikopensius T, Jagomagi T, Saag M. Contemporary management of TMJ involvement in JIA patients and its orofacial consequences. EPMA J. 2016;7:12.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ringold S, Tzaribachev N, Cron RQ. Management of temporomandibular joint arthritis in adult rheumatology practices: a survey of adult rheumatologists. Pediatr Rheumatol Online J. 2012;10(1):26.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Weiss PF, Arabshahi B, Johnson A, Bilaniuk LT, Zarnow D, Cahill AM, et al. High prevalence of temporomandibular joint arthritis at disease onset in children with juvenile idiopathic arthritis, as detected by magnetic resonance imaging but not by ultrasound. Arthritis Rheum. 2008;58(4):1189–96.PubMedCrossRefGoogle Scholar
  48. 48.
    Twilt M, Mobers SM, Arends LR, ten Cate R, van Suijlekom-Smit L. Temporomandibular involvement in juvenile idiopathic arthritis. J Rheumatol. 2004;31(7):1418–22.PubMedGoogle Scholar
  49. 49.
    Foeldvari I, Tzaribachev N, Cron RQ. Results of a multinational survey regarding the diagnosis and treatment of temporomandibular joint involvement in juvenile idiopathic arthritis. Pediatr Rheumatol Online J. 2014;12:6.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Moen K, Bertelsen LT, Hellem S, Jonsson R, Brun JG. Salivary gland and temporomandibular joint involvement in rheumatoid arthritis: relation to disease activity. Oral Dis. 2005;11(1):27–34.PubMedCrossRefGoogle Scholar
  51. 51.
    Ince DO, Ince A, Moore TL. Effect of methotrexate on the temporomandibular joint and facial morphology in juvenile rheumatoid arthritis patients. Am J Orthod Dentofac Orthop. 2000;118(1):75–83.CrossRefGoogle Scholar
  52. 52.
    Prince FH, Twilt M, ten Cate R, van Rossum MA, Armbrust W, Hoppenreijs EP, et al. Long-term follow-up on effectiveness and safety of etanercept in juvenile idiopathic arthritis: the Dutch national register. Ann Rheum Dis. 2009;68(5):635–41.PubMedCrossRefGoogle Scholar
  53. 53.
  54. 54.
    Schmeling H, Horneff G, Benseler SM, Fritzler MJ. Pharmacogenetics: can genes determine treatment efficacy and safety in JIA? Nat Rev Rheumatol. 2014;10(11):682–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Lee WJ, Briars L, Lee TA, Calip GS, Suda KJ, Schumock GT. Use of tumor necrosis factor-alpha inhibitors in children and young adults with juvenile idiopathic arthritis or rheumatoid arthritis. Pharmacotherapy. 2016;36(12):1201–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Infliximab: DrugBank; [February 5th, 2018]. https://www.drugbank.ca/drugs/DB00065.
  57. 57.
    Jinesh S. Pharmaceutical aspects of anti-inflammatory TNF-blocking drugs. Inflammopharmacology. 2015;23(2–3):71–7.PubMedCrossRefGoogle Scholar
  58. 58.
  59. 59.
    Guillaume-Czitrom S, Club Rhumatismes et Inflammations. Biologic targeted therapies in pediatric rheumatology. Joint Bone Spine. 2014;81(Suppl 1):2–48.PubMedCrossRefGoogle Scholar
  60. 60.
  61. 61.
    Golimumab: DrugBank; [February 5th, 2018]. https://www.drugbank.ca/drugs/DB06674.
  62. 62.
    Tracey D, Klareskog L, Sasso EH, Salfeld JG, Tak PP. Tumor necrosis factor antagonist mechanisms of action: a comprehensive review. Pharmacol Ther. 2008;117(2):244–79.PubMedCrossRefGoogle Scholar
  63. 63.
    Certolizumab: DrugBank; [February 5th, 2018]. https://www.drugbank.ca/drugs/DB08904.
  64. 64.
  65. 65.
    Akutsu M, Ogura N, Ito K, Kawashima M, Kishida T, Kondoh T. Effects of interleukin-1beta and tumor necrosis factor-alpha on macrophage inflammatory protein-3alpha production in synovial fibroblast-like cells from human temporomandibular joints. J Oral Pathol Med. 2013;42(6):491–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Dinarello CA. Keep up the heat on IL-1. Blood. 2012;120(13):2538–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633–52.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281(1):8–27.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Goldbach-Mansky R. Blocking interleukin-1 in rheumatic diseases. Ann N Y Acad Sci. 2009;1182:111–23.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    McQuay H, Carroll D, Jadad AR, Wiffen P, Moore A. Anticonvulsant drugs for management of pain: a systematic review. BMJ. 1995;311(7012):1047–52.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Alencar FG Jr, Viana PG, Zamperini C, Becker A. Patient education and self-care for the management of jaw pain upon awakening: a randomized controlled clinical trial comparing the effectiveness of adding pharmacologic treatment with cyclobenzaprine or tizanidine. J Oral Facial Pain Headache. 2014;28(2):119–27.PubMedCrossRefGoogle Scholar
  72. 72.
    van Tulder MW, Koes BW, Bouter LM. Conservative treatment of acute and chronic nonspecific low back pain. A systematic review of randomized controlled trials of the most common interventions. Spine (Phila Pa 1976). 1997;22(18):2128–56.CrossRefGoogle Scholar
  73. 73.
    Kara MI, Ozen E, Aksoy S, Erdogan MS. Diverse effects of 3 selective serotonin reuptake inhibitors on bruxism in a depressive patient treated with Botox therapy: a case report. J Clin Psychopharmacol. 2016;36(4):397–8.PubMedCrossRefGoogle Scholar
  74. 74.
    Milanlioglu A. Paroxetine-induced severe sleep bruxism successfully treated with buspirone. Clinics (Sao Paulo). 2012;67(2):191–2.CrossRefGoogle Scholar
  75. 75.
    Sabuncuoglu O, Ekinci O, Berkem M. Fluoxetine-induced sleep bruxism in an adolescent treated with buspirone: a case report. Spec Care Dentist. 2009;29(5):215–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Wise M. Citalopram-induced bruxism. Br J Psychiatry. 2001;178:182.PubMedCrossRefGoogle Scholar
  77. 77.
    Bostwick JM, Jaffee MS. Buspirone as an antidote to SSRI-induced bruxism in 4 cases. J Clin Psychiatry. 1999;60(12):857–60.PubMedCrossRefGoogle Scholar
  78. 78.
    Haviv Y, Rettman A, Aframian D, Sharav Y, Benoliel R. Myofascial pain: an open study on the pharmacotherapeutic response to stepped treatment with tricyclic antidepressants and gabapentin. J Oral Facial Pain Headache. 2015;29(2):144–51.PubMedCrossRefGoogle Scholar
  79. 79.
    Plesh O, Curtis D, Levine J, McCall WD Jr. Amitriptyline treatment of chronic pain in patients with temporomandibular disorders. J Oral Rehabil. 2000;27(10):834–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Sharav Y, Singer E, Schmidt E, Dionne RA, Dubner R. The analgesic effect of amitriptyline on chronic facial pain. Pain. 1987;31(2):199–209.PubMedCrossRefGoogle Scholar
  81. 81.
    Bendtsen L, Jensen R. Amitriptyline reduces myofascial tenderness in patients with chronic tension-type headache. Cephalalgia. 2000;20(6):603–10.PubMedCrossRefGoogle Scholar
  82. 82.
    Mohamed SE, Christensen LV, Penchas J. A randomized double-blind clinical trial of the effect of amitriptyline on nocturnal masseteric motor activity (sleep bruxism). Cranio. 1997;15(4):326–32.PubMedCrossRefGoogle Scholar
  83. 83.
    Raigrodski AJ, Mohamed SE, Gardiner DM. The effect of amitriptyline on pain intensity and perception of stress in bruxers. J Prosthodont. 2001;10(2):73–7.PubMedCrossRefGoogle Scholar
  84. 84.
    Raigrodski AJ, Christensen LV, Mohamed SE, Gardiner DM. The effect of four-week administration of amitriptyline on sleep bruxism. A double-blind crossover clinical study. Cranio. 2001;19(1):21–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Nasri-Heir C, Khan J, Heir GM. Topical medications as treatment of neuropathic orofacial pain. Dent Clin N Am. 2013;57(3):541–53.PubMedCrossRefGoogle Scholar
  86. 86.
    Derry S, Moore RA, Rabbie R. Topical NSAIDs for chronic musculoskeletal pain in adults. Cochrane Database Syst Rev. 2012;(9):CD007400.
  87. 87.
    Lin J, Zhang W, Jones A, Doherty M. Efficacy of topical non-steroidal anti-inflammatory drugs in the treatment of osteoarthritis: meta-analysis of randomised controlled trials. BMJ. 2004;329(7461):324.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bjordal JM, Klovning A, Ljunggren AE, Slordal L. Short-term efficacy of pharmacotherapeutic interventions in osteoarthritic knee pain: a meta-analysis of randomised placebo-controlled trials. Eur J Pain. 2007;11(2):125–38.PubMedCrossRefGoogle Scholar
  89. 89.
    Heir G, Karolchek S, Kalladka M, Vishwanath A, Gomes J, Khatri R, et al. Use of topical medication in orofacial neuropathic pain: a retrospective study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(4):466–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Senye M, Mir CF, Morton S, Thie NM. Topical nonsteroidal anti-inflammatory medications for treatment of temporomandibular joint degenerative pain: a systematic review. J Orofac Pain. 2012;26(1):26–32.PubMedGoogle Scholar
  91. 91.
    Kanai A, Kumaki C, Niki Y, Suzuki A, Tazawa T, Okamoto H. Efficacy of a metered-dose 8% lidocaine pump spray for patients with post-herpetic neuralgia. Pain Med. 2009;10(5):902–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Nalamachu S, Wieman M, Bednarek L, Chitra S. Influence of anatomic location of lidocaine patch 5% on effectiveness and tolerability for postherpetic neuralgia. Patient Prefer Adherence. 2013;7:551–7.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Okayasu I, Komiyama O, Ayuse T, De Laat A. Effect of topical lidocaine in the oral and facial regions on tactile sensory and pain thresholds. Arch Oral Biol. 2016;72:51–5.PubMedCrossRefGoogle Scholar
  94. 94.
    Dalpiaz AS, Lordon SP, Lipman AG. Topical lidocaine patch therapy for myofascial pain. J Pain Palliat Care Pharmacother. 2004;18(3):15–34.PubMedCrossRefGoogle Scholar
  95. 95.
    Lin YC, Kuan TS, Hsieh PC, Yen WJ, Chang WC, Chen SM. Therapeutic effects of lidocaine patch on myofascial pain syndrome of the upper trapezius: a randomized, double-blind, placebo-controlled study. Am J Phys Med Rehabil. 2012;91(10):871–82.PubMedCrossRefGoogle Scholar
  96. 96.
    Baeurle SA, Kiselev MG, Makarova ES, Nogovitsin EA. Effect of the counterion behavior on the frictional-compressive properties of chondroitin sulfate solutions. Polymer. 2009;50(7):1805–13.CrossRefGoogle Scholar
  97. 97.
    Murphy J. Herbal remedies, supplements & acupuncture for arthritis: American College of Rheumatology; 2017 [cited 2018 March 20]. https://www.rheumatology.org/i-am-a/patient-caregiver/treatments/herbal-remedies-supplements-acupuncture-for-arthritis.
  98. 98.
    Board approves CPG on the management of osteoarthritis of the hip: American Academy of Orthopedic Surgeons; March 13, 2017 [cited 2018 March 20]. https://www.aaos.org/News/DailyEdition2017/Wednesday/001/.
  99. 99.
    Glucosamine and chondroitin for osteoarthritis: National Center for Complementary and Integrative Health; [cited 2018 March 20]. https://nccih.nih.gov/health/glucosaminechondroitin.
  100. 100.
    National Center for Complimentary and Alternative Medicine NIoH. The NIH Glucosamine/Chondroitin Arthritis Intervention Trial (GAIT). J Pain Palliat Care Pharmacother. 2008;22(1):39–43.CrossRefGoogle Scholar
  101. 101.
    Okazaki J, Kakudo K, Kamada A, Utoh E, Gonda Y, Shirasu R, et al. Chondroitin sulfate isomers in synovial fluid of healthy and diseased human temporomandibular joints. Eur J Oral Sci. 1997;105(5 Pt 1):440–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Ishimaru JI, Ogi N, Mizuno S, Goss AN. Quantitation of chondroitin-sulfates, disaccharides and hyaluronan in normal, early and advanced osteoarthritic sheep temporomandibular joints. Osteoarthr Cartil. 2001;9(4):365–70.PubMedCrossRefGoogle Scholar
  103. 103.
    Shankland WE 2nd. The effects of glucosamine and chondroitin sulfate on osteoarthritis of the TMJ: a preliminary report of 50 patients. Cranio. 1998;16(4):230–5.PubMedCrossRefGoogle Scholar
  104. 104.
    Haghighat A, Behnia A, Kaviani N, Khorami B. Evaluation of glucosamine sulfate and ibuprofen effects in patients with temporomandibular joint osteoarthritis symptom. J Res Pharm Pract. 2013;2(1):34–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Thie NM, Prasad NG, Major PW. Evaluation of glucosamine sulfate compared to ibuprofen for the treatment of temporomandibular joint osteoarthritis: a randomized double blind controlled 3 month clinical trial. J Rheumatol. 2001;28(6):1347–55.PubMedGoogle Scholar
  106. 106.
    Nguyen P, Mohamed SE, Gardiner D, Salinas T. A randomized double-blind clinical trial of the effect of chondroitin sulfate and glucosamine hydrochloride on temporomandibular joint disorders: a pilot study. Cranio. 2001;19(2):130–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Damlar I, Esen E, Tatli U. Effects of glucosamine-chondroitin combination on synovial fluid IL-1beta, IL-6, TNF-alpha and PGE2 levels in internal derangements of temporomandibular joint. Med Oral Patol Oral Cir Bucal. 2015;20(3):e278–83.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Cahlin BJ, Dahlstrom L. No effect of glucosamine sulfate on osteoarthritis in the temporomandibular joints—a randomized, controlled, short-term study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(6):760–6.PubMedCrossRefGoogle Scholar
  109. 109.
    Alvarez DJ, Rockwell PG. Trigger points: diagnosis and management. Am Fam Physician. 2002;65(4):653–60.PubMedGoogle Scholar
  110. 110.
    Han SC, Harrison P. Myofascial pain syndrome and trigger-point management. Reg Anesth. 1997;22(1):89–101.PubMedCrossRefGoogle Scholar
  111. 111.
    Graff-Radford SB, Bassiur JP. Temporomandibular disorders and headaches. Neurol Clin. 2014;32(2):525–37.PubMedCrossRefGoogle Scholar
  112. 112.
    Hong CZ. Lidocaine injection versus dry needling to myofascial trigger point. The importance of the local twitch response. Am J Phys Med Rehabil. 1994;73(4):256–63.PubMedCrossRefGoogle Scholar
  113. 113.
    Ay S, Evcik D, Tur BS. Comparison of injection methods in myofascial pain syndrome: a randomized controlled trial. Clin Rheumatol. 2010;29(1):19–23.PubMedCrossRefGoogle Scholar
  114. 114.
    Ga H, Choi JH, Park CH, Yoon HJ. Acupuncture needling versus lidocaine injection of trigger points in myofascial pain syndrome in elderly patients—a randomised trial. Acupunct Med. 2007;25(4):130–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Ozkan F, Cakir Ozkan N, Erkorkmaz U. Trigger point injection therapy in the management of myofascial temporomandibular pain. Agri. 2011;23(3):119–25.PubMedCrossRefGoogle Scholar
  116. 116.
    Gupta P, Singh V, Sethi S, Kumar A. A comparative study of trigger point therapy with local anaesthetic (0.5% bupivacaine) versus combined trigger point injection therapy and levosulpiride in the management of myofascial pain syndrome in the orofacial region. J Maxillofac Oral Surg. 2016;15(3):376–83.PubMedCrossRefGoogle Scholar
  117. 117.
    Fredriksson L, Alstergren P, Kopp S. Serotonergic mechanisms influence the response to glucocorticoid treatment in TMJ arthritis. Mediat Inflamm. 2005;2005(4):194–201.CrossRefGoogle Scholar
  118. 118.
    Arabshahi B, Dewitt EM, Cahill AM, Kaye RD, Baskin KM, Towbin RB, et al. Utility of corticosteroid injection for temporomandibular arthritis in children with juvenile idiopathic arthritis. Arthritis Rheum. 2005;52(11):3563–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Samiee A, Sabzerou D, Edalatpajouh F, Clark GT, Ram S. Temporomandibular joint injection with corticosteroid and local anesthetic for limited mouth opening. J Oral Sci. 2011;53(3):321–5.PubMedCrossRefGoogle Scholar
  120. 120.
    Hersh EV, Balasubramaniam R, Pinto A. Pharmacologic management of temporomandibular disorders. Oral Maxillofac Surg Clin North Am. 2008;20(2):197–210, vi.PubMedCrossRefGoogle Scholar
  121. 121.
    Schindler C, Paessler L, Eckelt U, Kirch W. Severe temporomandibular dysfunction and joint destruction after intra-articular injection of triamcinolone. J Oral Pathol Med. 2005;34(3):184–6.PubMedCrossRefGoogle Scholar
  122. 122.
    Lochbuhler N, Saurenmann RK, Muller L, Kellenberger CJ. Magnetic resonance imaging assessment of temporomandibular joint involvement and mandibular growth following corticosteroid injection in juvenile idiopathic arthritis. J Rheumatol. 2015;42(8):1514–22.PubMedCrossRefGoogle Scholar
  123. 123.
    Stoustrup P, Kristensen KD, Kuseler A, Gelineck J, Cattaneo PM, Pedersen TK, et al. Reduced mandibular growth in experimental arthritis in the temporomandibular joint treated with intra-articular corticosteroid. Eur J Orthod. 2008;30(2):111–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Stoll ML, Good J, Sharpe T, Beukelman T, Young D, Waite PD, et al. Intra-articular corticosteroid injections to the temporomandibular joints are safe and appear to be effective therapy in children with juvenile idiopathic arthritis. J Oral Maxillofac Surg. 2012;70(8):1802–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Temple-Wong MM, Ren S, Quach P, Hansen BC, Chen AC, Hasegawa A, et al. Hyaluronan concentration and size distribution in human knee synovial fluid: variations with age and cartilage degeneration. Arthritis Res Ther. 2016;18:18.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Reichenbach S, Blank S, Rutjes AW, Shang A, King EA, Dieppe PA, et al. Hylan versus hyaluronic acid for osteoarthritis of the knee: a systematic review and meta-analysis. Arthritis Rheum. 2007;57(8):1410–8.PubMedCrossRefGoogle Scholar
  127. 127.
    AAOS releases revised clinical practice guideline for osteoarthritis of the knee [press release]. American Academy of Orthopedic Surgeons, June 4, 2013.Google Scholar
  128. 128.
    Nitzan DW. The process of lubrication impairment and its involvement in temporomandibular joint disc displacement: a theoretical concept. J Oral Maxillofac Surg. 2001;59(1):36–45.PubMedCrossRefGoogle Scholar
  129. 129.
    Nitzan DW, Nitzan U, Dan P, Yedgar S. The role of hyaluronic acid in protecting surface-active phospholipids from lysis by exogenous phospholipase A(2). Rheumatology (Oxford). 2001;40(3):336–40.CrossRefGoogle Scholar
  130. 130.
    Bertolami CN, Gay T, Clark GT, Rendell J, Shetty V, Liu C, et al. Use of sodium hyaluronate in treating temporomandibular joint disorders: a randomized, double-blind, placebo-controlled clinical trial. J Oral Maxillofac Surg. 1993;51(3):232–42.PubMedCrossRefGoogle Scholar
  131. 131.
    Alpaslan GH, Alpaslan C. Efficacy of temporomandibular joint arthrocentesis with and without injection of sodium hyaluronate in treatment of internal derangements. J Oral Maxillofac Surg. 2001;59(6):613–8; discussion 8–9.PubMedCrossRefGoogle Scholar
  132. 132.
    Goiato MC, da Silva EV, de Medeiros RA, Turcio KH, Dos Santos DM. Are intra-articular injections of hyaluronic acid effective for the treatment of temporomandibular disorders? A systematic review. Int J Oral Maxillofac Surg. 2016;45(12):1531–7.PubMedCrossRefGoogle Scholar
  133. 133.
    Gencer ZK, Ozkiris M, Okur A, Korkmaz M, Saydam L. A comparative study on the impact of intra-articular injections of hyaluronic acid, tenoxicam and betametazon on the relief of temporomandibular joint disorder complaints. J Craniomaxillofac Surg. 2014;42(7):1117–21.PubMedCrossRefGoogle Scholar
  134. 134.
    Guarda-Nardini L, Stifano M, Brombin C, Salmaso L, Manfredini D. A one-year case series of arthrocentesis with hyaluronic acid injections for temporomandibular joint osteoarthritis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103(6):e14–22.PubMedCrossRefGoogle Scholar
  135. 135.
    Manfredini D, Bonnini S, Arboretti R, Guarda-Nardini L. Temporomandibular joint osteoarthritis: an open label trial of 76 patients treated with arthrocentesis plus hyaluronic acid injections. Int J Oral Maxillofac Surg. 2009;38(8):827–34.PubMedCrossRefGoogle Scholar
  136. 136.
    Guarda-Nardini L, Manfredini D, Stifano M, Staffieri A, Marioni G. Intra-articular injection of hyaluronic acid for temporomandibular joint osteoarthritis in elderly patients. Stomatologija. 2009;11(2):60–5.PubMedGoogle Scholar
  137. 137.
    Guarda-Nardini L, Manfredini D, Ferronato G. Short-term effects of arthrocentesis plus viscosupplementation in the management of signs and symptoms of painful TMJ disc displacement with reduction. A pilot study. Oral Maxillofac Surg. 2010;14(1):29–34.PubMedCrossRefGoogle Scholar
  138. 138.
    Manfredini D, Guarda-Nardini L, Ferronato G. Single-needle temporomandibular joint arthrocentesis with hyaluronic acid injections. Preliminary data after a five-injection protocol. Minerva Stomatol. 2009;58(10):471–8.PubMedGoogle Scholar
  139. 139.
    Guarda-Nardini L, Ferronato G, Favero L, Manfredini D. Predictive factors of hyaluronic acid injections short-term effectiveness for TMJ degenerative joint disease. J Oral Rehabil. 2011;38(5):315–20.PubMedCrossRefGoogle Scholar
  140. 140.
    Guarda-Nardini L, Rossi A, Arboretti R, Bonnini S, Stellini E, Manfredini D. Single- or multiple-session viscosupplementation protocols for temporomandibular joint degenerative disorders: a randomized clinical trial. J Oral Rehabil. 2015;42(7):521–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Raj N, Sehgal A, Hall JE, Sharma A, Murrin KR, Groves ND. Comparison of the analgesic efficacy and plasma concentrations of high-dose intra-articular and intramuscular morphine for knee arthroscopy. Eur J Anaesthesiol. 2004;21(12):932–7.PubMedGoogle Scholar
  142. 142.
    Stein C, Pfluger M, Yassouridis A, Hoelzl J, Lehrberger K, Welte C, et al. No tolerance to peripheral morphine analgesia in presence of opioid expression in inflamed synovia. J Clin Invest. 1996;98(3):793–9.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Kunjur J, Anand R, Brennan PA, Ilankovan V. An audit of 405 temporomandibular joint arthrocentesis with intra-articular morphine infusion. Br J Oral Maxillofac Surg. 2003;41(1):29–31.PubMedCrossRefGoogle Scholar
  144. 144.
    List T, Tegelberg A, Haraldson T, Isacsson G. Intra-articular morphine as analgesic in temporomandibular joint arthralgia/osteoarthritis. Pain. 2001;94(3):275–82.PubMedCrossRefGoogle Scholar
  145. 145.
    Chicre-Alcantara TC, Torres-Chavez KE, Fischer L, Clemente-Napimoga JT, Melo V, Parada CA, et al. Local kappa opioid receptor activation decreases temporomandibular joint inflammation. Inflammation. 2012;35(1):371–6.PubMedCrossRefGoogle Scholar
  146. 146.
    Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25(5):341–8.PubMedCrossRefGoogle Scholar
  147. 147.
    Pierce J, Jacobson P, Benedetti E, Peterson E, Phibbs J, Preslar A, et al. Collection and characterization of amniotic fluid from scheduled C-section deliveries. Cell Tissue Bank. 2016;17(3):413–25.PubMedCrossRefGoogle Scholar
  148. 148.
    Bottai D, Cigognini D, Nicora E, Moro M, Grimoldi MG, Adami R, et al. Third trimester amniotic fluid cells with the capacity to develop neural phenotypes and with heterogeneity among sub-populations. Restor Neurol Neurosci. 2012;30(1):55–68.PubMedGoogle Scholar
  149. 149.
    In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FH, Willemze R, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood. 2003;102(4):1548–9.CrossRefGoogle Scholar
  150. 150.
    Amniotic fluid may be safe and effective alternative to hyaluronic acid for osetoarthritis pain: interim results [press release]. National Harbor: American Academy of Pain Medicine, March 19, 2015.Google Scholar
  151. 151.
    Vines JB, Aliprantis AO, Gomoll AH, Farr J. Cryopreserved amniotic suspension for the treatment of knee osteoarthritis. J Knee Surg. 2016;29(6):443–50.PubMedCrossRefGoogle Scholar
  152. 152.
    Gabriel N, Connelly ST, Silva R. Intra-articular injections of amniotic fluid for temporomandibular joint disorder. AADR Annual Meeting; March 21–24, 2018; Fort Lauderdale, FL.Google Scholar
  153. 153.
    Zhang JC, Sun L, Nie QH. Botulism, where are we now? Clin Toxicol (Phila). 2010;48(9):867–79.CrossRefGoogle Scholar
  154. 154.
    van Ermengem E. Classics in infectious diseases. A new anaerobic bacillus and its relation to botulism. E. van Ermengem. Originally published as “Ueber einen neuen anaeroben Bacillus und seine Beziehungen zum Botulismus” in Zeitschrift fur Hygiene und Infektionskrankheiten 26: 1–56, 1897. Rev Infect Dis. 1979;1(4):701–19.PubMedCrossRefGoogle Scholar
  155. 155.
    Snipe PT, Sommer H. Studies on botulinus toxin: 3. Acid precipitation of botulinus toxin. J Infect Dis. 1928;43(2):152–60.CrossRefGoogle Scholar
  156. 156.
    Swaminathan S. Molecular structures and functional relationships in clostridial neurotoxins. FEBS J. 2011;278(23):4467–85.PubMedCrossRefGoogle Scholar
  157. 157.
    Rosow LK, Strober JB. Infant botulism: review and clinical update. Pediatr Neurol. 2015;52(5):487–92.PubMedCrossRefGoogle Scholar
  158. 158.
    Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001;285(8):1059–70.PubMedCrossRefGoogle Scholar
  159. 159.
    Burgen AS, Dickens F, Zatman LJ. The action of botulinum toxin on the neuro-muscular junction. J Physiol. 1949;109(1–2):10–24.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Kerner J. Das Fettgift oder die Fettsäure und ihre Wirkungen auf den thierischen Organismus: ein Beitrag zur Untersuchung des in verdorbenen Würsten giftig wirkenden Stoffes. Stuttgart: J.G. Cotta; 1822.Google Scholar
  161. 161.
    Scott AB. Botulinum toxin injection into extraocular muscles as an alternative to strabismus surgery. Ophthalmology. 1980;87(10):1044–9.PubMedCrossRefGoogle Scholar
  162. 162.
    Lew MF. Review of the FDA-approved uses of botulinum toxins, including data suggesting efficacy in pain reduction. Clin J Pain. 2002;18(6 Suppl):S142–6.PubMedCrossRefGoogle Scholar
  163. 163.
    Binder WJ, Brin MF, Blitzer A, Schoenrock LD, Pogoda JM. Botulinum toxin type A (BOTOX) for treatment of migraine headaches: an open-label study. Otolaryngol Head Neck Surg. 2000;123(6):669–76.PubMedCrossRefGoogle Scholar
  164. 164.
    Betley MJ, Sugiyama H. Noncorrelation between mouse toxicity and serologically assayed toxin in Clostridium botulinum type A culture fluids. Appl Environ Microbiol. 1979;38(2):297–300.PubMedPubMedCentralGoogle Scholar
  165. 165.
    Hambleton P. Clostridium botulinum toxins: a general review of involvement in disease, structure, mode of action and preparation for clinical use. J Neurol. 1992;239(1):16–20.PubMedCrossRefGoogle Scholar
  166. 166.
    Montecucco C, Schiavo G. Structure and function of tetanus and botulinum neurotoxins. Q Rev Biophys. 1995;28(4):423–72.PubMedCrossRefGoogle Scholar
  167. 167.
    Foran P, Lawrence GW, Shone CC, Foster KA, Dolly JO. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release. Biochemistry. 1996;35(8):2630–6.PubMedCrossRefGoogle Scholar
  168. 168.
    Black JD, Dolly JO. Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol. 1986;103(2):535–44.PubMedCrossRefGoogle Scholar
  169. 169.
    Fernandez-Salas E, Steward LE, Ho H, Garay PE, Sun SW, Gilmore MA, et al. Plasma membrane localization signals in the light chain of botulinum neurotoxin. Proc Natl Acad Sci U S A. 2004;101(9):3208–13.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Kalandakanond S, Coffield JA. Cleavage of SNAP-25 by botulinum toxin type A requires receptor-mediated endocytosis, pH-dependent translocation, and zinc. J Pharmacol Exp Ther. 2001;296(3):980–6.PubMedGoogle Scholar
  171. 171.
    Keller JE, Neale EA. The role of the synaptic protein snap-25 in the potency of botulinum neurotoxin type A. J Biol Chem. 2001;276(16):13476–82.PubMedCrossRefGoogle Scholar
  172. 172.
    Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci. 2008;28(14):3689–96.PubMedCrossRefGoogle Scholar
  173. 173.
    Tsai YC, Maditz R, Kuo CL, Fishman PS, Shoemaker CB, Oyler GA, et al. Targeting botulinum neurotoxin persistence by the ubiquitin-proteasome system. Proc Natl Acad Sci U S A. 2010;107(38):16554–9.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Qerama E, Fuglsang-Frederiksen A, Jensen TS. The role of botulinum toxin in management of pain: an evidence-based review. Curr Opin Anaesthesiol. 2010;23(5):602–10.PubMedCrossRefGoogle Scholar
  175. 175.
    Welch MJ, Purkiss JR, Foster KA. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon. 2000;38(2):245–58.PubMedCrossRefGoogle Scholar
  176. 176.
    Moreno-Lopez B, de la Cruz RR, Pastor AM, Delgado-Garcia JM. Effects of botulinum neurotoxin type A on abducens motoneurons in the cat: alterations of the discharge pattern. Neuroscience. 1997;81(2):437–55.Google Scholar
  177. 177.
    Guarda-Nardini L, Manfredini D, Salamone M, Salmaso L, Tonello S, Ferronato G. Efficacy of botulinum toxin in treating myofascial pain in bruxers: a controlled placebo pilot study. Cranio. 2008;26(2):126–35.PubMedCrossRefGoogle Scholar
  178. 178.
    Sidebottom AJ, Patel AA, Amin J. Botulinum injection for the management of myofascial pain in the masticatory muscles. A prospective outcome study. Br J Oral Maxillofac Surg. 2013;51(3):199–205.PubMedCrossRefGoogle Scholar
  179. 179.
    Pearce LB, First ER, MacCallum RD, Gupta A. Pharmacologic characterization of botulinum toxin for basic science and medicine. Toxicon. 1997;35(9):1373–412.PubMedCrossRefGoogle Scholar
  180. 180.
    Dolly O. Synaptic transmission: inhibition of neurotransmitter release by botulinum toxins. Headache. 2003;43(Suppl 1):S16–24.PubMedCrossRefGoogle Scholar
  181. 181.
    Shah JP, Phillips TM, Danoff JV, Gerber LH. An in vivo microanalytical technique for measuring the local biochemical milieu of human skeletal muscle. J Appl Physiol (1985). 2005;99(5):1977–84.CrossRefGoogle Scholar
  182. 182.
    Fortuna R, Horisberger M, Vaz MA, Herzog W. Do skeletal muscle properties recover following repeat onabotulinum toxin A injections? J Biomech. 2013;46(14):2426–33.PubMedCrossRefGoogle Scholar
  183. 183.
    Koerte IK, Schroeder AS, Fietzek UM, Borggraefe I, Kerscher M, Berweck S, et al. Muscle atrophy beyond the clinical effect after a single dose of OnabotulinumtoxinA injected in the procerus muscle: a study with magnetic resonance imaging. Dermatol Surg. 2013;39(5):761–5.PubMedCrossRefGoogle Scholar
  184. 184.
    de Paiva A, Meunier FA, Molgo J, Aoki KR, Dolly JO. Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci U S A. 1999;96(6):3200–5.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Durham PL, Cady R. Insights into the mechanism of onabotulinumtoxinA in chronic migraine. Headache. 2011;51(10):1573–7.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Matak I, Bach-Rojecky L, Filipovic B, Lackovic Z. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A. Neuroscience. 2011;186:201–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rebeka G. Silva
    • 1
    • 2
    Email author
  • Valeria Gerloni
    • 3
  • S. Thaddeus Connelly
    • 1
    • 2
  1. 1.Oral and Maxillofacial Surgery, San Francisco VA Health Care SystemUniversity of California San FranciscoSan FranciscoUSA
  2. 2.Private Practice, Dental Implant and Oral Surgery of San FranciscoSan FranciscoUSA
  3. 3.Pediatric RheumatologyCasa di cura “La Modonina”MilanoItaly

Personalised recommendations