Advertisement

Answer Set Programming Modulo ‘Space-Time’

  • Carl Schultz
  • Mehul Bhatt
  • Jakob Suchan
  • Przemysław Andrzej Wałęga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11092)

Abstract

We present ASP Modulo ‘Space-Time’, a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-temporal data is crucial. The framework and resulting system is the only general KR-based method for declaratively reasoning about the dynamics of ‘space-time’ regions as first-class objects.

Notes

Acknowledgements

This work was partially supported by the Germany Research Foundation (DFG) as part of the CRC EASE; and partially by the NCN grant 2016/23/N/HS1/02168.

References

  1. 1.
    Aiello, M., Pratt-Hartmann, I., van Benthem, J.: Handbook of Spatial Logics. Springer, Dordrecht (2007).  https://doi.org/10.1007/978-1-4020-5587-4CrossRefzbMATHGoogle Scholar
  2. 2.
    Bartholomew, M., Lee, J.: System aspmt2smt: computing ASPMT theories by SMT solvers. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS (LNAI), vol. 8761, pp. 529–542. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11558-0_37CrossRefGoogle Scholar
  3. 3.
    Bhatt, M., Lee, J.H., Schultz, C.: CLP(QS): a declarative spatial reasoning framework. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds.) COSIT 2011. LNCS, vol. 6899, pp. 210–230. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23196-4_12CrossRefGoogle Scholar
  4. 4.
    Bhatt, M., Loke, S.: Modelling dynamic spatial systems in the situation calculus. Spat. Cogn. Comput. 8(1), 86–130 (2008)CrossRefGoogle Scholar
  5. 5.
    Bomanson, J., Gebser, M., Janhunen, T., Kaufmann, B., Schaub, T.: Answer set programming modulo acyclicity\({}^{\text{* }}\). Fundam. Inform. 147(1), 63–91 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Erdem, E., Gelfond, M., Leone, N.: Applications of answer set programming. AI Mag. 37(3), 53–68 (2016)CrossRefGoogle Scholar
  7. 7.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control: Preliminary report. In: Leuschel, M., Schrijvers, T. (eds.) Technical Communications of ICLP, vol. 14(4–5) (2014). theory and Practice of Logic Programming, Online SupplementGoogle Scholar
  8. 8.
    Gebser, M., Ostrowski, M., Schaub, T.: Constraint answer set solving. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 235–249. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02846-5_22CrossRefGoogle Scholar
  9. 9.
    Gelfond, M.: Answer sets. Handbook of knowledge representation, vol. 1, p. 285 (2008)Google Scholar
  10. 10.
    Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP/SLP, vol. 88, pp. 1070–1080 (1988)Google Scholar
  11. 11.
    Hazarika, S.M.: Qualitative spatial change: space-time histories and continuity. Ph.D. thesis, The University of Leeds (2005)Google Scholar
  12. 12.
    Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint query languages (preliminary report). In: Proceedings of the 9th Symposium on Principles of Database Systems, pp. 299–313. ACM (1990)Google Scholar
  13. 13.
    Lee, J., Meng, Y.: Answer set programming modulo theories and reasoning about continuous changes. In: IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China, August 3–9, 2013 (2013)Google Scholar
  14. 14.
    Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley-ISTE, London (2011)zbMATHGoogle Scholar
  15. 15.
    Muller, P.: A qualitative theory of motion based on spatio-temporal primitives. KR 98, 131–141 (1998)Google Scholar
  16. 16.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. KR 92, 165–176 (1992)Google Scholar
  17. 17.
    Suchan, J., Bhatt, M.: Deep semantic abstractions of everyday human activities. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds.) ROBOT 2017. AISC, vol. 693, pp. 477–488. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-70833-1_39CrossRefGoogle Scholar
  18. 18.
    Suchan, J., Bhatt, M., Wałęga, P.A., Schultz, C.: Visual explanation by high-level abduction: on answer-set programming driven reasoning about moving objects. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, February 2–7, 2018. AAAI Press (2018)Google Scholar
  19. 19.
    Wałęga, P.A., Bhatt, M., Schultz, C.: ASPMT(QS): non-monotonic spatial reasoning with answer set programming modulo theories. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) LPNMR 2015. LNCS (LNAI), vol. 9345, pp. 488–501. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23264-5_41CrossRefzbMATHGoogle Scholar
  20. 20.
    Wallgrün, J.O.: Topological adjustment of polygonal data. In: Timpf, S., Laube, P. (eds.) Advances in Spatial Data Handling, pp. 193–208. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-32316-4_13CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Carl Schultz
    • 1
  • Mehul Bhatt
    • 2
    • 3
  • Jakob Suchan
    • 3
  • Przemysław Andrzej Wałęga
    • 4
    • 5
  1. 1.DIGIT, Aarhus UniversityAarhusDenmark
  2. 2.Örebro UniversityÖrebroSweden
  3. 3.University of BremenBremenGermany
  4. 4.University of OxfordOxfordUK
  5. 5.University of WarsawWarsawPoland

Personalised recommendations