The MET: The Art of Flexible Reasoning with Modalities

  • Tobias GleißnerEmail author
  • Alexander Steen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11092)


Modal logics have numerous applications in computational linguistics, artificial intelligence, rule-based reasoning, and, in general, alethic, deontic and epistemic contexts. Higher-order quantified modal logics additionally incorporate the expressiveness of higher-order formalisms and thereby provide a quite general reasoning framework. By exploiting this expressiveness, the Modal Embedding Tool (MET) allows to automatically encode higher-order modal logic problems into equivalent problems of classical logic, enabling the use of a broad variety of established reasoning tools. In this system description, the functionality and usage of MET as well as a suitable input syntax for flexible reasoning with modalities are presented.


Flexible Reasoning Rule-based Reasoning Modal Logic System Varying Domain Semantics Input Problem Statement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material


  1. 1.
    Schulz, S.: E – a brainiac theorem prover. AI Commun. 15(2,3), 111–126 (2002)zbMATHGoogle Scholar
  2. 2.
    Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer, Heidelberg (2012). Scholar
  3. 3.
    Benzmüller, C., Sultana, N., Paulson, L.C., Theiß, F.: The higher-order prover LEO-II. J. Autom. Reason. 55(4), 389–404 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNAI, vol. 10900, pp. 108–116. Springer, Heidelberg (2018)CrossRefGoogle Scholar
  5. 5.
    Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-Order Logic. Lecture Notes in Computer Science, vol. 2283. Springer, Heidelberg (2002). Scholar
  6. 6.
    Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of Modal Logic, vol. 3. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  7. 7.
    Benzmüller, C., Woltzenlogel Paleo, B.: The inconsistency in Gödel’s ontological argument: a success story for AI in metaphysics. In: Kambhampati, S. (ed.) IJCAI 2016, vol. 1–3, pp. 936–942. AAAI Press (2016). (Acceptance rate \(\le 25\%\))Google Scholar
  8. 8.
    Benzmüller, C., Weber, L., Woltzenlogel Paleo, B.: Computer-assisted analysis of the Anderson-Hájek controversy. Logica Universalis 11(1), 139–151 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fuenmayor, D., Benzmüller, C.: Types, Tableaus and Gödel’s God in Isabelle/HOL. Archive of Formal Proofs (2017). This publication is machine verified with Isabelle/HOL, but only mildly human reviewedGoogle Scholar
  10. 10.
    Benzmüller, C., Paulson, L.: Quantified multimodal logics in simple type theory. Logica Universalis 7(1), 7–20 (2013). (Special Issue on Multimodal Logics)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure. From CNF to TH0, TPTP v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gleißner, T., Steen, A., Benzmüller, C.: Theorem provers for every normal modal logic. In: Eiter, T., Sands, D. (eds.) LPAR-21. EPiC Series in Computing, Maun, Botswana, vol. 46, pp. 14–30. EasyChair (2017)Google Scholar
  14. 14.
    Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Metaphysics Research Lab (2014)Google Scholar
  15. 15.
    Becker, O.: Zur Logik der Modalitäten. Max Niemeyer Verlag (1930)Google Scholar
  16. 16.
    Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). Scholar
  17. 17.
    Athan, T., Boley, H., Paschke, A.: Ruleml 1.02: Deliberation, reaction and consumer families. In: Bassiliades, N., et al. (eds.) Proceedings of the RuleML 2015 Challenge, the Special Track on Rule-based Recommender Systems for the Web of Data, the Special Industry Track and the RuleML 2015 Doctoral Consortium hosted by the 9th International Web Rule Symposium (RuleML 2015). CEUR Workshop Proceedings, vol. 1417. (2015)Google Scholar
  18. 18.
    Cao, S.T., Nguyen, L.A., Szalas, A.: The web ontology rule language OWL 2 RL\(^{+}\) and its extensions. Trans. Comput. Collect. Intell. 13, 152–175 (2014)Google Scholar
  19. 19.
    Boley, H., Benzmüller, C., Luan, M., Sha, Z.: Translating higher-order modal logic from RuleML to TPTP. In Giurca, A., et al. (eds.) Proceedings of the RuleML 2016 Challenge, the Special Industry Track and the RuleML 2016 Doctoral Consortium hosted by the 10th International Web Rule Symposium (RuleML 2016). CEUR Workshop Proceedings, vol. 1620. (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Institute of Computer ScienceFreie Universität BerlinBerlinGermany

Personalised recommendations