Advertisement

Electrochemical Friction Force Microscopy

  • Florian Hausen
Chapter
Part of the Microtechnology and MEMS book series (MEMS)

Abstract

Tribology is a very interdisciplinary area of research where physicists, engineers, materials scientists and chemists all contribute to obtain a better understanding and control of friction and wear of surfaces in sliding contacts. As friction and wear is strongly affected by the chemical nature of the interacting surfaces electrochemistry plays an important role in tribology. Within this chapter the use of established electrochemical methods to control surface chemistry and how this affects tribological properties will be discussed.

References

  1. 1.
    S.Ã. Mischler, Triboelectrochemical techniques and interpretation methods in tribocorrosion: a comparative evaluation. Tribol. Int. 41, 573 (2008)CrossRefGoogle Scholar
  2. 2.
    D.M. Kolb, An atomistic view of electrochemistry. Surf. Sci. 500, 722 (2002)CrossRefGoogle Scholar
  3. 3.
    D. Henderson, D. Boda, Insights from theory and simulation on the electrical double layer. Phys. Chem. Chem. Phys. 11, 3822 (2009)CrossRefGoogle Scholar
  4. 4.
    D.M. Kolb, Reconstruction phenomena at metal-electrolyte interfaces. Prog. Surf. Sci. 51, 109 (1996)CrossRefGoogle Scholar
  5. 5.
    A.C. Hillier, S. Kim, A.J. Bard, Measurement of double-layer forces at the electrode/electrolyte interface using the atomic force microscope: potential and anion dependent interactions. J. Phys. Chem. 100, 18808 (1996)CrossRefGoogle Scholar
  6. 6.
    A.A. Kornyshev, Double-layer in ionic liquids: paradigm change? J. Phys. Chem. B 111, 5545 (2007)CrossRefGoogle Scholar
  7. 7.
    M. Mezger et al., Molecular layering of fluorinated ionic liquids at a charged sapphire (0001) surface. Science 322, 424 (2008)CrossRefGoogle Scholar
  8. 8.
    R. Hayes, G.G. Warr, R. Atkin, At the interface: solvation and designing ionic liquids. Phys. Chem. Chem. Phys. 12, 1709 (2010)CrossRefGoogle Scholar
  9. 9.
    R. Hayes et al., Double layer structure of ionic liquids at the Au(111) electrode interface: an atomic force microscopy investigation. J. Phys. Chem. C 115, 6855 (2011)CrossRefGoogle Scholar
  10. 10.
    X. Zhang et al., Probing double layer structures of Au (111)-BMIPF6 ionic liquid interfaces from potential-dependent AFM force curves. Chem. Commun. 48, 582 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Perkin, Ionic liquids in confined geometries. Phys. Chem. Chem. Phys. 14, 5052 (2012)CrossRefGoogle Scholar
  12. 12.
    R.M. Espinosa-Marzal, A. Arcifa, A. Rossi, N.D. Spencer, Microslips to ‘Avalanches’ in confined, molecular layers of ionic liquids. J. Phys. Chem. Lett. 5, 179 (2014)CrossRefGoogle Scholar
  13. 13.
    D. Henderson, J. Wu, Electrochemical properties of the double layer of an ionic liquid using a dimer model electrolyte and density functional theory. J. Phys. Chem. B 116, 2520 (2012)CrossRefGoogle Scholar
  14. 14.
    CRC Handbook of Chemistry & Physics. (CRC Press; Taylor & Francis group, 2017)Google Scholar
  15. 15.
    V.V. Pavlishchuk, A.W. Addison, Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 °C. Inorg. Chim. Acta 298, 97 (2000)CrossRefGoogle Scholar
  16. 16.
    C. Bonnaud, I. Billard, N. Papaiconomou, E. Chainet, J.C. Lepre, Rationale for the implementation of reference electrodes in ionic liquids. Phys. Chem. Chem. Phys. 18, 8148 (2016)CrossRefGoogle Scholar
  17. 17.
    R.G. Compton, C.E. Banks, Understanding Voltammetry. (World Scientific, 2007)Google Scholar
  18. 18.
    B.E. Conway, Electrochemical oxide film formation at noble-metals as a surface-chemical process. Prog. Surf. Sci. 49, 331 (1995)CrossRefGoogle Scholar
  19. 19.
    C.H. Hamann, W. Vielstich, Elektrochemie, 4. Auflage. (Wiley-VCH, 2005)Google Scholar
  20. 20.
    A.J. Bard, L.R. Faulkner, Electrochemical Methods—Fundamentals and Applications. (Wiley)Google Scholar
  21. 21.
    M. Valtiner, G.N. Ankah, A. Bashir, F.U. Renner, Atomic force microscope imaging and force measurements at electrified and actively corroding interfaces: challenges and novel cell design. Rev. Sci. Instrum. 82, 23703 (2011)CrossRefGoogle Scholar
  22. 22.
    N. Argibay, W.G. Sawyer, Frictional voltammetry with copper. Tribol. Lett. 46, 337 (2012)CrossRefGoogle Scholar
  23. 23.
    M.N.F. Ismail, T.J. Harvey, J.A. Wharton, R.J.K. Wood, A. Humphreys, Surface potential effects on friction and abrasion of sliding contacts lubricated by aqueous solutions. Wear 267, 1978 (2009)CrossRefGoogle Scholar
  24. 24.
    M. Valtiner, X. Banquy, K. Kristiansen, G.W. Greene, J.N. Israelachvili, The electrochemical surface forces apparatus: the effect of surface roughness, electrostatic surface potentials, and anodic oxide growth on interaction forces, and friction between dissimilar surfaces in aqueous solutions. Langmuir 28, 13080 (2012)CrossRefGoogle Scholar
  25. 25.
    A. Labuda et al., High-resolution friction force microscopy under electrochemical control. Rev. Sci. Instrum. 81, 83701 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Zhu, G.H. Kelsall, H.A. Spikes, Triboelectrochemistry on a nanometre scale. Tribol. Lett. 2, 287 (1996)CrossRefGoogle Scholar
  27. 27.
    T. Edison, US Patent 158787 (1875)Google Scholar
  28. 28.
    F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids. (Clarendon Press, 2008)Google Scholar
  29. 29.
    R.B. Waterhouse, Tribology and electrochemistry. Tribology 3, 158 (1970)CrossRefGoogle Scholar
  30. 30.
    G.H. Kelsall, Y. Zhu, H.A. Spikes, Electrochemical effects on friction between metal oxide surfaces in aqueous solutions. J. Chem. Soc., Faraday Trans. 89, 267 (1993)CrossRefGoogle Scholar
  31. 31.
    G. Xie, D. Guo, J. Luo, Lubrication under charged conditions. Tribology Int. 84, 22 (2015)CrossRefGoogle Scholar
  32. 32.
    G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986)CrossRefGoogle Scholar
  33. 33.
    C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang, Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942 (1987)CrossRefGoogle Scholar
  34. 34.
    M. Binggeli, R. Christoph, H.-E. Hintermann, J. Colchero, O. Marti, Friction force measurements on potential controlled graphite in an electrolytic environment. Nanotechnology 4, 59 (1993)CrossRefGoogle Scholar
  35. 35.
    M. Binggeli, R. Christoph, H.-E. Hintermann, Observation of controlled, electrochemically induced friction force modulations in the nano-Newton range. Tribol. Lett. 1, 13 (1995)CrossRefGoogle Scholar
  36. 36.
    E. Weilandt, A. Menck, O. Marti, Friction studies at steps with friction force microscopy. Surf. Interface Anal. 23, 428 (1995)CrossRefGoogle Scholar
  37. 37.
    B. Schnyder, D. Alliata, R. Kötz, H. Siegenthaler, Electrochemical intercalation of perchlorate ions in HOPG: an SFM/LFM and XPS study. Appl. Surf. Sci. 173, 221 (2001)CrossRefGoogle Scholar
  38. 38.
    F. Hausen, M. Nielinger, S. Ernst, H. Baltruschat, Nanotribology at single crystal electrodes: influence of ionic adsorbates on friction forces studied with AFM. Electrochim. Acta 53, 6058 (2008) CrossRefGoogle Scholar
  39. 39.
    H. Hölscher, D. Ebeling, U. Schwarz, Friction at atomic-scale surface steps: experiment and theory. Phys. Rev. Lett. 101 (2008)Google Scholar
  40. 40.
    P. Egberts, et al., Environmental dependence of atomic-scale friction at graphite surface steps. Phys. Rev. B—Condens. Matter Mater. Phys. 88, 1 (2013)Google Scholar
  41. 41.
    R.L. Schwoebel, E.J. Shipsey, Step motion on crystal surfaces. J. Appl. Phys. 37, 3682 (1966)CrossRefGoogle Scholar
  42. 42.
    G. Ehrlich, Atomic displacements in one- and two-dimensional diffusion. J. Chem. Phys. 44, 1050 (1966)CrossRefGoogle Scholar
  43. 43.
    S. Sundararajan, B. Bhushan, Topography-induced contributions to friction forces measured using an atomic force/friction force microscope. J. Appl. Phys. 88, 4825 (2000)CrossRefGoogle Scholar
  44. 44.
    E. Herrero, L.J. Buller, H.D. Abruna, Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem. Rev. 1001, 1897 (2001)CrossRefGoogle Scholar
  45. 45.
    J. Lipkowski, Z. Shi, A. Chen, B. Pettinger, C. Bilger, Ionic adsorption at the Au(111) electrode. Electrochim. Acta 43, 2875 (1998)CrossRefGoogle Scholar
  46. 46.
    H. Angerstein-Kozlowska, B.E. Conway, A. Hamelin, L. Stoicoviciu, Elementary steps of electrochemical oxidation of single-crystal planes of Au Part II. A chemical and structural basis of oxidation of the (111) plane. J. Electroanal. Chem. Interfacial Electrochem. 228, 429 (1987)CrossRefGoogle Scholar
  47. 47.
    O.M. Magnussen, Ordered anion adlayers on metal electrode surfaces. Chem. Rev. 102, 679 (2002)CrossRefGoogle Scholar
  48. 48.
    W. Kautek, S. Dieluweit, M. Sahre, Combined scanning force microscopy and electrochemical quartz microbalance in-situ investigation of specific adsorption and phase change processes at the silver/halogenide interface. J. Phys. Chem. B 101, 2709 (1997)CrossRefGoogle Scholar
  49. 49.
    Z. Shi, J. Lipkowski, Investigations of So42- Adsorption at the Au(111) electrode in the presence of underpotentially deposited copper adatoms. J. Electroanal. Chem. 364, 289 (1994)CrossRefGoogle Scholar
  50. 50.
    F.C. Simeone, D.M. Kolb, S. Venkatachalam, T. Jacob, Die Au(111)-Elektrolyt-Grenzschicht: eine Tunnelspektroskopie- und DFT-Untersuchung. Angew. Chemie 119, 9061 (2007)CrossRefGoogle Scholar
  51. 51.
    D.M. Kolb, Elektrochemische oberflächenphysik. Angew. Chem. 113, 1198 (2001)CrossRefGoogle Scholar
  52. 52.
    F. Hausen, N.N. Gosvami, R. Bennewitz, Anion adsorption and atomic friction on Au(111). Electrochim. Acta 56, 10694 (2011)CrossRefGoogle Scholar
  53. 53.
    A. Labuda et al., Switching atomic friction by electrochemical oxidation. Langmuir 27, 2561 (2011)CrossRefGoogle Scholar
  54. 54.
    Z. Shi, S. Wu, J. Lipkowski, Coadsorption of metal atoms and anions: Cu upd in the presence of SO42–, Cl– and Br–. Electrochim. Acta Surf. Struct. Electrochem. React. 40, 9 (1995)Google Scholar
  55. 55.
    Bennewitz, R., Hausen, F., N.N. Gosvami, Nanotribology of clean and modi fi ed gold surfaces. J. Mater. Res. 28, 1279 (2013)CrossRefGoogle Scholar
  56. 56.
    M. Nielinger, H. Baltruschat, Nanotribology under Electrochemical Conditions: influence of a copper (sub)monolayer deposited on single crystal electrodes on friction forces studied with atomic force microscopy. PhysChemChemPhys 9, 3965 (2007)Google Scholar
  57. 57.
    D. Huitink, F. Gao, H. Liang, Tribo-electrochemical surface modification of tantalum using in situ AFM techniques. Scanning 32, 336 (2010)CrossRefGoogle Scholar
  58. 58.
    F. Hausen, J.A. Zimmet, R. Bennewitz, Surface structures and frictional properties of Au(100) in an electrochemical environment. Surf. Sci. 607, 20 (2013)CrossRefGoogle Scholar
  59. 59.
    P. Walden, Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzenen Salze. Bull. Acad. Sci. St. Petersbg. 8, 405 (1914)Google Scholar
  60. 60.
    M.-D. Bermudez et al., Ionic liquids as advanced lubricant fluids. Molecules 14, 2888 (2009)CrossRefGoogle Scholar
  61. 61.
    A. Somers, P. Howlett, D. MacFarlane, M. Forsyth, A review of ionic liquid lubricants. Lubricants 1, 3 (2013)CrossRefGoogle Scholar
  62. 62.
    F. Zhou, Y. Liang, W. Liu, Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590 (2009)CrossRefGoogle Scholar
  63. 63.
    I. Minami, Ionic liquids in tribology. Molecules 14, 2286 (2009)CrossRefGoogle Scholar
  64. 64.
    M. Watanabe et al., Application of ionic liquids to energy storage and conversion materials and devices. Chem. Rev. 117(10), 7190 (2017)CrossRefGoogle Scholar
  65. 65.
    J.P. Hallett, T. Welton, Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508 (2011)CrossRefGoogle Scholar
  66. 66.
    A. Pinkert, K.N. Marsh, S.S. Pang, M.P. Staiger, Ionic liquids and their interaction with cellulose. Chem. Rev. 109, 6712 (2009)CrossRefGoogle Scholar
  67. 67.
    P. Hapiot, C. Lagrost, Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 108, 2238 (2008)CrossRefGoogle Scholar
  68. 68.
    J.S. Wilkes, M.J. Zaworotko, Air and water stable 1-Ethyl-3-Methylimidazolium Based Ionic Liquids. J. Chem. Soc.—Chem. Commun. 965 (1992)Google Scholar
  69. 69.
    M.V. Fedorov, A.A. Kornyshev, Ionic liquids at electrified interfaces. Chem. Rev. 114, 2978 (2014)CrossRefGoogle Scholar
  70. 70.
    A.M. Smith, K.R.J. Lovelock, N.N. Gosvami, T. Welton, S. Perkin, Quantized friction across ionic liquid thin films. Phys. Chem. Chem. Phys. 15, 15317 (2013)CrossRefGoogle Scholar
  71. 71.
    M.V. Fedorov, A.A. Kornyshev, Ionic liquid near a charged wall: structure and capacitance of electrical double layer 112, 11868 (2008)Google Scholar
  72. 72.
    C. Merlet, B. Rotenberg, P.A. Madden, M. Salanne, Computer simulations of ionic liquids at electrochemical interfaces. Phys. Chem. Chem. Phys. 15, 15781 (2013)CrossRefGoogle Scholar
  73. 73.
    M.Z. Bazant, B.D. Storey, A.A. Kornyshev, Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106, 046102 (2011)Google Scholar
  74. 74.
    J. Sweeney et al., Control of nanoscale friction on gold in an ionic liquid by a potential-dependent ionic lubricant layer. Phys. Rev. Lett. 109, 155502 (2012)CrossRefGoogle Scholar
  75. 75.
    S. Baldelli, Surface structure at the ionic liquid-electrified metal interface. Acc. Chem. Res. 41, 421–431 (2008)CrossRefGoogle Scholar
  76. 76.
    S. Baldelli, Interfacial structure of room-temperature ionic liquids at the solid-liquid interface as probed by sum frequency generation spectroscopy. J. Phys. Chem. Lett. 4, 244 (2013)CrossRefGoogle Scholar
  77. 77.
    S. Watanabe, M. Nakano, K. Miyake, R. Tsuboi, S. Sasaki, Effect of molecular orientation angle of imidazolium ring on frictional properties of imidazolium-based ionic liquid. Langmuir 30, 8078 (2014)CrossRefGoogle Scholar
  78. 78.
    H. Li, R.J. Wood, M.W. Rutland, R. Atkin, An ionic liquid lubricant enables superlubricity to be ‘switched on’ in situ using an electrical potential. Chem. Commun. 50, 4368 (2014)CrossRefGoogle Scholar
  79. 79.
    H. Li, M.W. Rutland, R. Atkin, Ionic liquid lubrication: influence of ion structure, surface potential and sliding velocity. Phys. Chem. Chem. Phys. 15, 14616 (2013)CrossRefGoogle Scholar
  80. 80.
    F. Federici Canova, H. Matsubara, M. Mizukami, K. Kurihara, A.L. Shluger, Shear dynamics of nanoconfined ionic liquids. Phys. Chem. Chem. Phys. (2014).  https://doi.org/10.1039/c4cp00005fCrossRefGoogle Scholar
  81. 81.
    O.Y. Fajardo, F. Bresme, A.A. Kornyshev, M. Urbakh, Electrotunable lubricity with ionic liquid nanoscale films. Sci. Rep. 5, 7698 (2015)CrossRefGoogle Scholar
  82. 82.
    A.M. Smith, M.A. Parkes, S. Perkin, Molecular friction mechanisms across nano fi lms of a bilayer- forming ionic liquid. J. Phys. Chem. Lett. 5, 4032 (2014)CrossRefGoogle Scholar
  83. 83.
    R.M. Espinosa-Marzal, A. Arcifa, A. Rossi, N.D. Spencer, Ionic liquids confined in hydrophilic nanocontacts: structure and lubricity in the presence of water. J. Phys. Chem. C 118, 6491 (2014)CrossRefGoogle Scholar
  84. 84.
    A. Kailer et al., Influence of electric potentials on the tribological behaviour of silicon carbide. Wear 271, 1922 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Forschungszentrum Jülich, Institute of Energy and Climate ResearchJülichGermany
  2. 2.Institute of Physical ChemistryRWTH Aachen UniversityAachenGermany
  3. 3.Jülich-Aachen Research Alliance, Section JARA-EnergyJülichGermany

Personalised recommendations