Tribochemistry and Morphology of P-Based Antiwear Films

  • A. Dorgham
  • A. Neville
  • A. MorinaEmail author
Part of the Microtechnology and MEMS book series (MEMS)


Zincdialkyldithiophosphate (ZDDP) is one of the most widely used additives, whether in oils or greases. ZDDP is multifunctional as it can work as antiwear, antioxidant and anticorrosion additive [1]. It exhibits these beneficial functionalities by its ability to decompose under rubbing, heating or possibly high pressure to form a protective film. In the case of this film is formed during heating without rubbing it is called a thermal antiwear film whereas in the case of rubbing, the film is called a tribofilm [2]. The antiwear mechanism of this tribofilm originates from its capability to separate the contacting surface [3, 4, 5, 6, 7], to digest the abrasive wear debris [8, 9, 10] and to decompose peroxides and peroxy-radicals [11, 12, 13].

Despite the numerous benefits of using the antiwear ZDDP additive, it has disadvantages as well. Firstly, ZDDP increases micropitting of the steel surface and thus decreases its bearing life [14, 15, 16, 17]. Secondly, it can poison...


  1. 1.
    Z. Yin, M. Kasrai, M. Fuller, G.M. Bancroft, K. Fyfe, K.H. Tan, Application of soft x-ray absorption spectroscopy in chemical characterization of antiwear films generated by ZDDP part I: the effects of physical parameters. Wear 202(2), 172–191 (1997)CrossRefGoogle Scholar
  2. 2.
    G.M. Bancroft, M. Kasrai, M. Fuller, Z. Yin, K. Fyfe, K.H. Tan, Mechanisms of tribochemical film formation: stability of tribo- and thermally-generated ZDDP films. Tribol. Lett. 3, 47–51 (1997)CrossRefGoogle Scholar
  3. 3.
    R.C. Watkins, The antiwear mechanism of ZDDP’s. Part II. Tribol. Int. 15(1), 13–15 (1982)CrossRefGoogle Scholar
  4. 4.
    F.G. Rounds, Effects of additives on the friction of steel on steel I. Surface topography and film composition studies. ASLE Trans. 7(1), 11–23 (1964)CrossRefGoogle Scholar
  5. 5.
    W.A. Glaeser, D. Baer, M. Engelhardt. In situ wear experiments in the scanning auger spectrometer. Wear 162–164. Part A(0), 132–138 (1993). Wear of Materials: Proceedings of the 9th International ConferenceGoogle Scholar
  6. 6.
    J.C. Bell, K.M. Delargy, A.M. Seeney, Paper IX (ii) the removal of substrate material through thick zinc dithiophosphate anti-wear films. Tribol. Ser. 21, 387–396 (1992)CrossRefGoogle Scholar
  7. 7.
    J.M. Palacios, Thickness and chemical composition of films formed by antimony dithiocarbamate and zinc dithiophosphate. Tribol. Int. 19(1), 35–39 (1986)CrossRefGoogle Scholar
  8. 8.
    J.M. Martin, Antiwear mechanisms of zinc dithiophosphate: a chemical hardness approach. Tribol. Lett. 6(1), 1–8 (1999)CrossRefGoogle Scholar
  9. 9.
    J.M. Martin, C. Grossiord, T. Le Mogne, S. Bec, A. Tonck, The two-layer structure of ZnDTP tribofilms: part I: AES, XPS and XANES analyses. Tribol. Int. 34(8), 523–530 (2001)CrossRefGoogle Scholar
  10. 10.
    M. Belin, J.M. Martin, J.L. Mansot, Role of iron in the amorphization process in friction-induced phosphate glasses. Tribol. Trans. 32(3), 410–413 (1989)CrossRefGoogle Scholar
  11. 11.
    J.J. Habeeb, W.H. Stover, The role of hydroperoxides in engine wear and the effect of zinc dialkyldithiophosphates. ASLE Trans. 30(4), 419–426 (1986)CrossRefGoogle Scholar
  12. 12.
    F. Rounds, Effects of hydroperoxides on wear as measured in four-ball wear tests. Tribol. Trans. 36(2), 297–303 (1993)CrossRefGoogle Scholar
  13. 13.
    P.A. Willermet, D.P. Dailey, R.O. Carter, P.J. Schmitz, W. Zhu, Mechanism of formation of antiwear films from zinc dialkyldithiophosphates. Tribol. Int. 28(3), 177–187 (1995)CrossRefGoogle Scholar
  14. 14.
    M.N. Webster, C.J.J. Norbart, An experimental investigation of micropitting using a roller disk machine. Tribol. Trans. 38(4), 883–893 (1995)CrossRefGoogle Scholar
  15. 15.
    C. Benyajati, A.V. Olver, C.J. Hamer, An experimental study of micropitting, using a new miniature test-rig. Tribol. Ser. 43, 601–610 (2003)CrossRefGoogle Scholar
  16. 16.
    V. Brizmer, H.R. Pasaribu, G.E. Morales-Espejel, Micropitting performance of oil additives in lubricated rolling contacts. Tribol. Trans. 56(5), 739–748 (2013)CrossRefGoogle Scholar
  17. 17.
    E. Lainé, A.V. Olver, T.A. Beveridge, Effect of lubricants on micropitting and wear. Tribol. Int. 41(11), 1049–1055 (2008)CrossRefGoogle Scholar
  18. 18.
    J. Andersson, M. Antonsson, L. Eurenius, E. Olsson, M. Skoglundh, Deactivation of diesel oxidation catalysts: vehicle and synthetic aging correlations. Appl. Catal. B Environ. 72(1), 71–81 (2007)CrossRefGoogle Scholar
  19. 19.
    C. Larese, F. Cabello Galisteo, M. López Granados, R. Mariscal, J.L.G. Fierro, M. Furió, R. Fernández Ruiz, Deactivation of real three way catalysts by CePo4 formation. Appl. Catal. B Environ. 40(4), 305–317 (2003)CrossRefGoogle Scholar
  20. 20.
    M.A. Nicholls, P.R. Norton, G.M. Bancroft, M. Kasrai, T. Do, B.H. Frazer, G. De Stasio, Nanometer scale chemomechanical characterization of antiwear films. Tribol. Lett. 17(2), 205–216 (2004)CrossRefGoogle Scholar
  21. 21.
    H. Spikes, The history and mechanisms of ZDDP. Tribol. Lett. 17(3), 469–489 (2004)CrossRefGoogle Scholar
  22. 22.
    B.H. Kim, R. Mourhatch, P.B. Aswath, Properties of tribofilms formed with ashless dithiophosphate and zinc dialkyl dithiophosphate under extreme pressure conditions. Wear 268(3), 579–591 (2010)CrossRefGoogle Scholar
  23. 23.
    X. Fu, W. Liu, Q. Xue, The application research on series of ashless P-containing EP and AW additives. Ind. Lubr. Tribol. 57(2), 80–83 (2005)CrossRefGoogle Scholar
  24. 24.
    R. Sarin, A.K. Gupta, D.K. Tuli, A.S. Verma, M.M. Rai, A.K. Bhatnagar, Synthesis and performance evaluation of o, o-dialkylphosphorodithioic disulphides as potential antiwear, extreme-pressure and antioxidant additives. Tribol. Int. 26(6), 389–394 (1993)CrossRefGoogle Scholar
  25. 25.
    M.N. Najman, M. Kasrai, G.M. Bancroft, Chemistry of antiwear films from ashless thiophosphate oil additives. Tribol. Lett. 17(2), 217–229 (2004)CrossRefGoogle Scholar
  26. 26.
    Z. Zhang, E.S. Yamaguchi, M. Kasrai, G.M. Bancroft, Tribofilms generated from ZDDP and DDP on steel surfaces: part 1, growth, wear and morphology. Tribol. Lett. 19(3), 211–220 (2005)CrossRefGoogle Scholar
  27. 27.
    A.M. Barnes, K.D. Bartle, V.R.A. Thibon, A review of zinc dialkyldithiophosphates (ZDDPS): characterisation and role in the lubricating oil. Tribol. Int. 34(6), 389–395 (2001)CrossRefGoogle Scholar
  28. 28.
    M.A. Nicholls, T. Do, P.R. Norton, M. Kasrai, G. Michael Bancroft, Review of the lubrication of metallic surfaces by zinc dialkyl-dithiophosphates. Tribol. Int. 38(1), 15–39 (2005)CrossRefGoogle Scholar
  29. 29.
    D.R. Armstrong, E.S. Ferrari, K.J. Roberts, D. Adams, An examination of the reactivity of zinc di-alkyl-di-thiophosphate in relation to its use as an anti-wear and anti-corrosion additive in lubricating oils. Wear 217(2), 276–287 (1998)CrossRefGoogle Scholar
  30. 30.
    L.R. Rudnick, Lubricant Additives: Chemistry and Applications (CRC Press, Boca Raton, 2009)CrossRefGoogle Scholar
  31. 31.
    P.G. Harrison, T. Kikabhai, Proton and phosphorus-31 nuclear magnetic resonance study of zinc (II) o, o′-dialkyl dithiophosphates in solution. J. Chem. Soc. Dalton Trans. (4), 807–814 (1987)Google Scholar
  32. 32.
    Z. Pawlak, Tribochemistry of Lubricating Oils, vol. 45 (Elsevier, Amsterdam, 2003)CrossRefGoogle Scholar
  33. 33.
    D.R. Armstrong, E.S. Ferrari, K.J. Roberts, D. Adams, An investigation into the molecular stability of zinc di-alkyl-di-thiophosphates (ZDDPs) in relation to their use as anti-wear and anti-corrosion additives in lubricating oils. Wear 208(1–2), 138–146 (1997)CrossRefGoogle Scholar
  34. 34.
    B.H. Kim, V. Sharma, P.B. Aswath, Chemical and mechanistic interpretation of thermal films formed by dithiophosphates using XANES. Tribol. Int. 114, 15–26 (2017)CrossRefGoogle Scholar
  35. 35.
    H. Spedding, R.C. Watkins, The antiwear mechanism of ZDDP’s. Part I. Tribol. Int. 15(1), 9–12 (1982)CrossRefGoogle Scholar
  36. 36.
    T.H. Handley, J.A. Dean, O, O′-dialkyl phosphorodithioic acids as extractants for metals. Anal. Chem. 34(10), 1312–1315 (1962)CrossRefGoogle Scholar
  37. 37.
    N.E. Gallopoulos, Thermal decomposition of metal dialkyldithiophosphate oil blends. ASLE Trans. 7(1), 55–63 (1964)CrossRefGoogle Scholar
  38. 38.
    P.A. Willermet, L.R. Mahoney, C.M. Bishop, Lubricant degradation and wear III. Antioxidant reactions and wear behavior of a zinc dialkyldithiophosphate in a fully formulated lubricant. ASLE Trans. 23(3), 225–231 (1980)CrossRefGoogle Scholar
  39. 39.
    A. Neville, A. Morina, T. Haque, M. Voong, Compatibility between tribological surfaces and lubricant additives—how friction and wear reduction can be controlled by surface/lube synergies. Tribol. Int. 40(10), 1680–1695 (2007)CrossRefGoogle Scholar
  40. 40.
    N.N. Gosvami, J.A. Bares, F. Mangolini, A.R. Konicek, D.G. Yablon, R.W. Carpick, Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348(6230), 102–106 (2015)CrossRefGoogle Scholar
  41. 41.
    J. Zhang, H. Spikes, On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63(2), 1–15 (2016)CrossRefGoogle Scholar
  42. 42.
    W. Tysoe, On stress-induced tribochemical reaction rates. Tribol. Lett. 65(2), 48 (2017)CrossRefGoogle Scholar
  43. 43.
    F.T. Barcroft, R.J. Bird, J.F. Hutton, D. Park, The mechanism of action of zinc thiophosphates as extreme pressure agents. Wear 77(3), 355–384 (1982)CrossRefGoogle Scholar
  44. 44.
    H. So, Y.C. Lin, G.G.S. Huang, T.S.T. Chang, Antiwear mechanism of zinc dialkyl dithiophosphates added to a paraffinic oil in the boundary lubrication condition. Wear 166(1), 17–26 (1993)CrossRefGoogle Scholar
  45. 45.
    A. Molina, Isolation and chemical characterization of a zinc dialkyldithiophosphate-derived antiwear agent. ASLE Trans. 30(4), 479–485 (1986)CrossRefGoogle Scholar
  46. 46.
    R.B. Jones, R.C. Coy, The chemistry of the thermal degradation of zinc dialkyldithiophosphate additives. ASLE Trans. 24(1), 91–97 (1981)CrossRefGoogle Scholar
  47. 47.
    D. Shakhvorostov, M.H. Müser, Y. Song, P.R. Norton, Smart materials behavior in phosphates: role of hydroxyl groups and relevance to antiwear films. J. Chem. Phys. 131(4), 044704 (2009)CrossRefGoogle Scholar
  48. 48.
    I.-M. Feng, Pyrolysis of zinc dialkyl phosphorodithioate and boundary lubrication. Wear 3(4), 309–311 (1960)CrossRefGoogle Scholar
  49. 49.
    I.-M. Feng, W.L. Perilstein, M.R. Adams, Solid film deposition and non-sacrificial boundary lubrication. ASLE Trans. 6(1), 60–66 (1963)CrossRefGoogle Scholar
  50. 50.
    R.C. Coy, R.B. Jones, The thermal degradation and EP performance of zinc dialkyldithiophosphate additives in white oil. ASLE Trans. 24(1), 77–90 (1981)CrossRefGoogle Scholar
  51. 51.
    R.J. Bird, G.D. Galvin, The application of photoelectron spectroscopy to the study of ep films on lubricated surfaces. Wear 37(1), 143–167 (1976)CrossRefGoogle Scholar
  52. 52.
    S.-H. Choa, K.C. Ludema, G.E. Potter, B.M. Dekoven, T.A. Morgan, K.K. Kar, A model of the dynamics of boundary film formation. Wear 177(1), 33–45 (1994)CrossRefGoogle Scholar
  53. 53.
    R.G. Pearson, Hard and soft acids and bases. J. Am. Chem. Soc. 85(22), 3533–3539 (1963)CrossRefGoogle Scholar
  54. 54.
    R.G. Pearson, J. Songstad, Application of the principle of hard and soft acids and bases to organic chemistry. J. Am. Chem. Soc. 89(8), 1827–1836 (1967)CrossRefGoogle Scholar
  55. 55.
    R.G. Pearson, Hard and soft acids and bases, HSAB, part 1: fundamental principles. J. Chem. Educ. 45(9), 581 (1968)CrossRefGoogle Scholar
  56. 56.
    R.G. Pearson, Hard and soft acids and bases, HSAB, part II: underlying theories. J. Chem. Educ. 45(10), 643 (1968)CrossRefGoogle Scholar
  57. 57.
    R.G. Pearson, Recent advances in the concept of hard and soft acids and bases. J. Chem. Educ. 64(7), 561 (1987)CrossRefGoogle Scholar
  58. 58.
    P.A. Willermet, R.O. Carter III, E.N. Boulos, Lubricant-derived tribochemical films—an infra-red spectroscopic study. Tribol. Int. 25(6), 371–380 (1992)CrossRefGoogle Scholar
  59. 59.
    A.J. Burn, The mechanism of the antioxidant action of zinc dialkyl dithiophosphates. Tetrahedron 22(7), 2153–2161 (1966)CrossRefGoogle Scholar
  60. 60.
    J.A. Howard, Y. Ohkatsu, J.H.B. Chenier, K.U. Ingold, Metal complexes as antioxidants. I. The reaction of zinc dialkyldithiophosphates and related compounds with peroxy radicals. Can. J. Chem. 51(10), 1543–1553 (1973)CrossRefGoogle Scholar
  61. 61.
    J.-M. Martin, C. Grossiord, T. Le Mogne, J. Igarashi, Transfer films and friction under boundary lubrication. Wear 245(1–2), 107–115 (2000)CrossRefGoogle Scholar
  62. 62.
    M.L.S. Fuller, M. Kasrai, G. Michael Bancroft, K. Fyfe, K.H. Tan, Solution decomposition of zinc dialkyl dithiophosphate and its effect on antiwear and thermal film formation studied by X-ray absorption spectroscopy. Tribol. Int. 31(10), 627–644 (1998)CrossRefGoogle Scholar
  63. 63.
    Z. Yin, M. Kasrai, G.M. Bancroft, K. Fyfe, M.L. Colaianni, K.H. Tan, Application of soft X-ray absorption spectroscopy in chemical characterization of antiwear films generated by ZDDP part II: the effect of detergents and dispersants. Wear 202(2), 192–201 (1997)CrossRefGoogle Scholar
  64. 64.
    A. Morina, H. Zhao, J.F.W. Mosselmans, In-situ reflection-XANES study of ZDDP and MoDTC lubricant films formed on steel and diamond like carbon (DLC) surfaces. Appl. Surf. Sci. 297, 167–175 (2014)CrossRefGoogle Scholar
  65. 65.
    M. Nicholls, M.N. Najman, Z. Zhang, M. Kasrai, P.R. Norton, P.U.P.A. Gilbert, The contribution of XANES spectroscopy to tribology. Can. J. Chem. 85(10), 816–830 (2007)CrossRefGoogle Scholar
  66. 66.
    Z. Zhang, E.S. Yamaguchi, M. Kasrai, G.M. Bancroft, X. Liu, M.E. Fleet, Tribofilms generated from ZDDP and DDP on steel surfaces: part 2, chemistry. Tribol. Lett. 19(3), 221–229 (2005)CrossRefGoogle Scholar
  67. 67.
    J.S. Sheasby, T.A. Caughlin, A.G. Blahey, K.F. Laycock, A reciprocating wear test for evaluating boundary lubrication. Tribol. Int. 23(5), 301–307 (1990)CrossRefGoogle Scholar
  68. 68.
    P.A. Willermet, J.M. Pieprzak, D.P. Dailey, R.O. Carter, N.E. Lindsay, L.P. Haack et al., The composition of surface layers formed in a lubricated cam/tappet contact. J. Tribol. 113(1), 38–47 (1991)CrossRefGoogle Scholar
  69. 69.
    P.A. Willermet, D.P. Dailey, R.O. Carter III, P.J. Schmitz, W. Zhu, J.C. Bell, D. Park, The composition of lubricant-derived surface layers formed in a lubricated cam/tappet contact ii. effects of adding overbased detergent and dispersant to a simple ZDTP solution. Tribol. Int. 28(3), 163–175 (1995)CrossRefGoogle Scholar
  70. 70.
    M. Aktary, M.T. McDermott, G.A. McAlpine, Morphology and nanomechanical properties of ZDDP antiwear films as a function of tribological contact time. Tribol. Lett. 12(3), 155–162 (2002)CrossRefGoogle Scholar
  71. 71.
    N.E. Lindsay, R.O. Carter III, P.J. Schmitz, L.P. Haack, R.E. Chase, J.E. deVries, P.A. Willermet, Characterization of films formed at a lubricated cam/tappet contact. Spectrochim. Acta Part A Mol. Spectrosc. 49(13–14), 2057–2070 (1993)CrossRefGoogle Scholar
  72. 72.
    F.G. Rounds, Some factors affecting the decomposition of three commercial zinc organodithiophosphates. ASLE Trans. 18(2), 79–89 (1975)CrossRefGoogle Scholar
  73. 73.
    R. McClintock, Effect of lubricants on rear axle pinion bearing breakin. ASLE Trans. 6(2), 154–160 (1963)CrossRefGoogle Scholar
  74. 74.
    J.S. Sheasby, T.A. Caughlin, J.J. Habeeb, Observation of the antiwear activity of zinc dialkyldithiophosphate additives. Wear 150(1–2), 247–257 (1991)CrossRefGoogle Scholar
  75. 75.
    M. Kasrai, M. Puller, M. Scaini, Z. Yin, R.W. Brunner, G.M. Bancroft, M.E. Fleet, K. Fyfe, K.H. Tan, Study of tribochemical film formation using x-ray absorption and photoelectron spectroscopies. Tribol. Ser. 30, 659–669 (1995)CrossRefGoogle Scholar
  76. 76.
    E.H. Loeser, R.C. Wiquist, S.B. Twiss, Cam and tappet lubrication. IV—radioactive study of sulfur in the EP film. ASLE Trans. 2(2), 199–207 (1959)CrossRefGoogle Scholar
  77. 77.
    J. Ye, S. Araki, M. Kano, Y. Yasuda, Nanometerscale mechanical/structural properties of molybdenum dithiocarbamate and zinc dialkylsithiophosphate tribofilms and friction reduction mechanism. Jpn. J. Appl. Phys. 44(7B), 5358–5361 (2005)CrossRefGoogle Scholar
  78. 78.
    M. Fuller, Z. Yin, M. Kasrai, G. Michael Bancroft, E.S. Yamaguchi, P. Ray Ryason, P.A. Willermet, K.H. Tan, Chemical characterization of tribochemical and thermal films generated from neutral and basic ZDDPs using X-ray absorption spectroscopy. Tribol. Int. 30(4), 305–315 (1997)CrossRefGoogle Scholar
  79. 79.
    M.L.S. Fuller, L.R. Fernandez, The use of X-ray absorption spectroscopy for monitoring the thickness of antiwear films from ZDDP. Tribol. Lett. 8, 187–192 (2000)CrossRefGoogle Scholar
  80. 80.
    M.A. Nicholls, G. Michael Bancroft, P.R. Norton, M. Kasrai, G. De Stasio, B.H. Frazer, L.M. Wiese, Chemomechanical properties of antiwear films using X-ray absorption microscopy and nanoindentation techniques. Tribol. Lett. 17(2), 245–259 (2004)CrossRefGoogle Scholar
  81. 81.
    J.M. Martin, M. Belin, J.L. Mansot, H. Dexpert, P. Lagarde, Frictioninduced amorphization with ZDDP—an EXAFS study. ASLE Trans. 29(4), 523–531 (1986)CrossRefGoogle Scholar
  82. 82.
    M.N. Najman, M. Kasrai, G.M. Bancroft, A. Miller, Study of the chemistry of films generated from phosphate ester additives on 52100 steel using X-ray absorption spectroscopy. Tribol. Lett. 13(3), 209–218 (2002)CrossRefGoogle Scholar
  83. 83.
    M.N. Najman, M. Kasrai, G.M. Bancroft, B.H. Frazer, G. De Stasio, The correlation of microchemical properties to antiwear (AW) performance in ashless thiophosphate oil additives. Tribol. Lett. 17(4), 811–822 (2004)CrossRefGoogle Scholar
  84. 84.
    Z. Zhang, M. Najman, M. Kasrai, G.M. Bancroft, E.S. Yamaguchi, Study of interaction of EP and AW additives with dispersants using XANES. Tribol. Lett. 18(1), 43–51 (2005)CrossRefGoogle Scholar
  85. 85.
    M.N. Najman, M. Kasrai, G.M. Bancroft, Investigating binary oil additive systems containing P and S using X-ray absorption near-edge structure spectroscopy. Wear 257(1), 32–40 (2004)CrossRefGoogle Scholar
  86. 86.
    M. Crobu, A. Rossi, F. Mangolini, N.D. Spencer, Tribochemistry of bulk zinc metaphosphate glasses. Tribol. Lett. 39(2), 121–134 (2010)CrossRefGoogle Scholar
  87. 87.
    R. Heuberger, A. Rossi, N.D. Spencer, XPS study of the influence of temperature on ZnDTP tribofilm composition. Tribol. Lett. 25(3), 185–196 (2006)CrossRefGoogle Scholar
  88. 88.
    R. Heuberger, A. Rossi, N.D. Spencer, Reactivity of alkylated phosphorothionates with steel: a tribological and surface analytical study. Lubr. Sci. 20, 79–102 (2008)CrossRefGoogle Scholar
  89. 89.
    R. Heuberger, A. Rossi, N.D. Spencer, Pressure dependence of znDTP tribochemical film formation: a combinatorial approach. Tribol. Lett. 28(2), 209–222 (2007)CrossRefGoogle Scholar
  90. 90.
    J.R. Van Wazer, K.A. Holst, Structure and properties of the condensed phosphates. I. Some general considerations about phosphoric acids. J. Am. Chem. Soc. 72(2), 639–644 (1950)CrossRefGoogle Scholar
  91. 91.
    J.R. Van Wazer, Structure and properties of the condensed phosphates. III. Solubility fractionation and other solubility studies. J. Am. Chem. Soc. 72(2), 647–655 (1950)CrossRefGoogle Scholar
  92. 92.
    C. Minfray, J.M. Martin, C. Esnouf, T. Le Mogne, R. Kersting, B. Hagenhoff, A multi-technique approach of tribofilm characterisation. Thin Solid Films 447, 272–277 (2004)CrossRefGoogle Scholar
  93. 93.
    R. Heuberger, A. Rossi, N.D. Spencer, XPS study of the influence of temperature on ZnDTP tribofilm composition. Tribol. Lett. 25(3), 185–196 (2007)CrossRefGoogle Scholar
  94. 94.
    M. Crobu, A. Rossi, N.D. Spencer, Effect of chain-length and countersurface on the tribochemistry of bulk zinc polyphosphate glasses. Tribol. Lett. 48(3), 393–406 (2012)CrossRefGoogle Scholar
  95. 95.
    M. Crobu, A. Rossi, F. Mangolini, N.D. Spencer, Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS. Anal. Bioanal. Chem. 403(5), 1415–1432 (2012)CrossRefGoogle Scholar
  96. 96.
    E. Liu, S.D. Kouame, An XPS study on the composition of zinc dialkyl dithiophosphate tribofilms and their effect on camshaft lobe wear. Tribol. Trans. 57(1), 18–27 (2014)CrossRefGoogle Scholar
  97. 97.
    E.C. Onyiriuka, Zinc phosphate glass surfaces studied by xps. J. Non-Cryst. Solids 163(3), 268–273 (1993)CrossRefGoogle Scholar
  98. 98.
    J.W. Wiench, M. Pruski, B. Tischendorf, J.U. Otaigbe, B.C. Sales, Structural studies of zinc polyphosphate glasses by nuclear magnetic resonance. J. Non-Cryst. Solids 263, 101–110 (2000)CrossRefGoogle Scholar
  99. 99.
    B. Tischendorf, J.U. Otaigbe, J.W. Wiench, M. Pruski, B.C. Sales, A study of short and intermediate range order in zinc phosphate glasses. J. Non-Cryst. Solids 282(2), 147–158 (2001)CrossRefGoogle Scholar
  100. 100.
    G. Walter, U. Hoppe, J. Vogel, G. Carl, P. Hartmann, The structure of zinc polyphosphate glass studied by diffraction methods and 31P NMR. J. Non-Cryst. Solids 333(3), 252–262 (2004)CrossRefGoogle Scholar
  101. 101.
    M. Najman, M. Kasrai, G. Michael Bancroft, R. Davidson, Combination of ashless antiwear additives with metallic detergents: interactions with neutral and overbased calcium sulfonates. Tribol. Int. 39(4), 342–355 (2006)CrossRefGoogle Scholar
  102. 102.
    B. Dacre, C.H. Bovington, The effect of metal composition on the adsorption of zinc di-isopropyldithiophosphate. ASLE Trans. 26(3), 333–343 (1983)CrossRefGoogle Scholar
  103. 103.
    K. Ito, J.-M. Martin, C. Minfray, K. Kato, Lowfriction tribofilm formed by the reaction of ZDDP on iron oxide. Tribol. Int. 39(12), 1538–1544 (2006)CrossRefGoogle Scholar
  104. 104.
    K. Ito, J.M. Martin, C. Minfray, K. Kato, Formation mechanism of a low friction ZDDP tribofilm on iron oxide. Tribol. Trans. 50(2), 211–216 (2007)CrossRefGoogle Scholar
  105. 105.
    S. Plaza, The adsorption of zinc dibutyldithiophosphates on iron and iron oxide powders. ASLE Trans. 30(2), 233–240 (1987)CrossRefGoogle Scholar
  106. 106.
    M. Watanabe, M. Sakuma, T. Inaba, Y. Iguchi, Formation and oxidation of sulfides on pure iron and iron oxides. Mater. Trans. JIM 41(7), 865–872 (2000)CrossRefGoogle Scholar
  107. 107.
    Y.-R. Li, G. Pereira, M. Kasrai, P.R. Norton, The effect of steel hardness on the performance of ZDDP antiwear films: a multi-technique approach. Tribol. Lett. 29(3), 201–211 (2008)CrossRefGoogle Scholar
  108. 108.
    J.S. Sheasby, T.A. Caughlin, W.A. Mackwood, The effect of steel hardness on the performance of antiwear additives. Wear 201(1–2), 209–216 (1996)CrossRefGoogle Scholar
  109. 109.
    B. Vengudusamy, J.H. Green, G.D. Lamb, H.A. Spikes, Tribological properties of tribofilms formed from ZDDP in DLC/DLC and DLC/steel contacts. Tribol. Int. 44(2), 165–174 (2011)CrossRefGoogle Scholar
  110. 110.
    A. Erdemir, C. Donnet, Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D Appl. Phys. 39(18), R311 (2006)CrossRefGoogle Scholar
  111. 111.
    I. Velkavrh, M. Kalin, J. Vizintin, The performance and mechanisms of DLC-coated surfaces in contact with steel in boundary-lubrication conditions: a review. Strojniški vestnik 54(3), 189–206 (2008)Google Scholar
  112. 112.
    M. Kalin, I. Velkavrh, J. Vižintin, L. Ožbolt, Review of boundary lubrication mechanisms of DLC coatings used in mechanical applications. Meccanica 43(6), 623–637 (2008)CrossRefGoogle Scholar
  113. 113.
    D.M. Nuruzzaman, M.A. Chowdhury, A. Nakajima, M.L. Rahaman, S.M.I. Karim, Friction and wear of diamond like carbon (DLC) coatings—a review. Recent Pat. Mech. Eng. 4(1), 55–78 (2011)Google Scholar
  114. 114.
    R. Zahid, M.B.H. Hassan, M. Varman, R.A. Mufti, M.A. Kalam, N.W.B.M. Zulkifli, M. Gulzar, A review on effects of lubricant formulations on tribological performance and boundary lubrication mechanisms of non-doped DLC/DLC contacts. Crit. Rev. Solid State Mater. Sci. 42, 1–28 (2016)Google Scholar
  115. 115.
    S. Equey, S. Roos, U. Mueller, R. Hauert, N.D. Spencer, R. Crockett, Tribofilm formation from ZnDTP on diamond-like carbon. Wear 264(3), 316–321 (2008)CrossRefGoogle Scholar
  116. 116.
    S. Equey, S. Roos, U. Mueller, R. Hauert, N.D. Spencer, R. Crockett, Reactions of zinc-free anti-wear additives in DLC/DLC and steel/steel contacts. Tribol. Int. 41(11), 1090–1096 (2008)CrossRefGoogle Scholar
  117. 117.
    K. Topolovec-Miklozic, F. Lockwood, H. Spikes, Behaviour of boundary lubricating additives on dlc coatings. Wear 265(11), 1893–1901 (2008)CrossRefGoogle Scholar
  118. 118.
    M. Kalin, E. Roman, L. Ožbolt, J. Vižintin, Metal-doped (Ti, WC) diamond-like-carbon coatings: reactions with extreme-pressure oil additives under tribological and static conditions. Thin Solid Films 518(15), 4336–4344 (2010)CrossRefGoogle Scholar
  119. 119.
    M. Kalin, E. Roman, J. Vižintin, The effect of temperature on the tribological mechanisms and reactivity of hydrogenated, amorphous diamond-like carbon coatings under oil-lubricated conditions. Thin Solid Films 515(7), 3644–3652 (2007)CrossRefGoogle Scholar
  120. 120.
    S. Akbari, J. Kovač, M. Kalin, Effect of ZDDP concentration on the thermal film formation on steel, hydrogenated non-doped and Si-doped DLC. Appl. Surf. Sci. 383, 191–199 (2016)CrossRefGoogle Scholar
  121. 121.
    T. Haque, A. Morina, A. Neville, R. Kapadia, S. Arrowsmith, Nonferrous coating/lubricant interactions in tribological contacts: assessment of tribofilms. Tribol. Int. 40(10), 1603–1612 (2007)CrossRefGoogle Scholar
  122. 122.
    B. Podgornik, S. Jacobson, S. Hogmark, DLC coating of boundary lubricated components—advantages of coating one of the contact surfaces rather than both or none. Tribol. Int. 36(11), 843–849 (2003)CrossRefGoogle Scholar
  123. 123.
    B. Podgornik, J. Vižintin, S. Jacobson, S. Hogmark, Tribological behaviour of WC/C coatings operating under different lubrication regimes. Surf. Coat. Technol. 177, 558–565 (2004)CrossRefGoogle Scholar
  124. 124.
    B. Podgornik, J. Vižintin, Tribological reactions between oil additives and dlc coatings for automotive applications. Surf. Coat. Technol. 200(5), 1982–1989 (2005)CrossRefGoogle Scholar
  125. 125.
    M.I. de Barros’ Bouchet, J.M. Martin, T. Le-Mogne, B. Vacher, Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38(3), 257–264 (2005)CrossRefGoogle Scholar
  126. 126.
    M. Ban, M. Ryoji, S. Fujii, J. Fujioka, Tribological characteristics of Si-containing diamond-like carbon films under oil-lubrication. Wear 253(3), 331–338 (2002)CrossRefGoogle Scholar
  127. 127.
    B. Podgornik, S. Jacobson, S. Hogmark, Influence of ep additive concentration on the tribological behaviour of dlc-coated steel surfaces. Surf. Coat. Technol. 191(2), 357–366 (2005)CrossRefGoogle Scholar
  128. 128.
    M. Kalin, J. Vižintin, J. Barriga, K. Vercammen, K. van Acker, A. Arnšek, The effect of doping elements and oil additives on the tribological performance of boundary-lubricated dlc/dlc contacts. Tribol. Lett. 17(4), 679–688 (2004)CrossRefGoogle Scholar
  129. 129.
    M. Kalin, J. Vižintin, Differences in the tribological mechanisms when using non-doped, metal-doped (Ti, WC), and non-metal-doped (Si) diamond-like carbon against steel under boundary lubrication, with and without oil additives. Thin Solid Films 515(4), 2734–2747 (2006)CrossRefGoogle Scholar
  130. 130.
    T. Haque, A. Morina, A. Neville, Tribological performance evaluation of a hydrogenated diamond-like carbon coating in sliding/rolling contact—effect of lubricant additives. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 225(6), 393–405 (2011)CrossRefGoogle Scholar
  131. 131.
    L. Yang, A. Neville, A. Brown, P. Ransom, A. Morina, Effect of lubricant additives on the WDLC coating structure when tested in boundary lubrication regime. Tribol. Lett. 57(2), 14 (2015)CrossRefGoogle Scholar
  132. 132.
    C. Donnet, A. Grill, Friction control of diamond-like carbon coatings. Surf. Coat. Technol. 94, 456–462 (1997)CrossRefGoogle Scholar
  133. 133.
    M. Kalin, S. Jahanmir, G. Dražič, Wear mechanisms of glass-infiltrated alumina sliding against alumina in water. J. Am. Ceram. Soc. 88(2), 346–352 (2005)CrossRefGoogle Scholar
  134. 134.
    L. Lazzarotto, L. Dubar, A. Dubois, P. Ravassard, J. Oudin, Three selection criteria for the cold metal forming lubricating oils containing extreme pressure agents. J. Mater. Process. Technol. 80, 245–250 (1998)CrossRefGoogle Scholar
  135. 135.
    A. Naveira-Suarez, A. Tomala, M. Grahn, M. Zaccheddu, R. Pasaribu, R. Larsson, The influence of base oil polarity and slide–roll ratio on additive-derived reaction layer formation. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 225, 565–576 (2011)CrossRefGoogle Scholar
  136. 136.
    A. Tomala, A. Naveira-Suarez, I.C. Gebeshuber, R. Pasaribu, Effect of base oil polarity on micro and nanofriction behaviour of base oil+ ZDDP solutions. Tribol. Mater. Surf. Interfaces 3(4), 182–188 (2009)CrossRefGoogle Scholar
  137. 137.
    A. Naveira Suarez, M. Grahn, R. Pasaribu, R. Larsson, The influence of base oil polarity on the tribological performance of zinc dialkyl dithiophospate additives. Tribol. Int. 43(12), 2268–2278 (2010)CrossRefGoogle Scholar
  138. 138.
    P. Kar, P. Asthana, H. Liang, Formation and characterization of tribofilms. J. Tribol. 130(4), 042301 (2008)CrossRefGoogle Scholar
  139. 139.
    I. Minami, K. Hirao, M. Memita, S. Mori, Investigation of anti-wear additives for low viscous synthetic esters: hydroxyalkyl phosphonates. Tribol. Int. 40(4), 626–631 (2007)CrossRefGoogle Scholar
  140. 140.
    I. Minami, S. Mori, Anti-wear additives for ester oils. J. Synth. Lubr. 22(2), 105–121 (2005)CrossRefGoogle Scholar
  141. 141.
    A. Dorgham, A. Neville, K. Ignatyev, F. Mosselmans, A. Morina, An in situ synchrotron XAS methodology for surface analysis under high temperature, pressure, and shear. Rev. Sci. Instrum. 88(1), 015101 (2017)CrossRefGoogle Scholar
  142. 142.
    E.S. Ferrari, K.J. Roberts, D. Adams, A multi-edge X-ray absorption spectroscopy study of the reactivity of zinc di-alkyl-di-thiophosphates (ZDDPS) anti-wear additives: 1. An examination of representative model compounds. Wear 236(1), 246–258 (1999)CrossRefGoogle Scholar
  143. 143.
    H. Cen, A. Morina, A. Neville, R. Pasaribu, I. Nedelcu, Effect of water on ZDDP anti-wear performance and related tribochemistry in lubricated steel/steel pure sliding contacts. Tribol. Int. 56, 47–57 (2012)CrossRefGoogle Scholar
  144. 144.
    I. Nedelcu, E. Piras, A. Rossi, H.R. Pasaribu, XPS analysis on the influence of water on the evolution of zinc dialkyldithiophosphate–derived reaction layer in lubricated rolling contacts. Surf. Interface Anal. 44(8), 1219–1224 (2012)CrossRefGoogle Scholar
  145. 145.
    E.S. Ferrari, K.J. Roberts, M. Sansone, D. Adams, A multi-edge xray absorption spectroscopy study of the reactivity of zinc di-alkyl-dithiophosphates anti-wear additives: 2. In situ studies of steel/oil interfaces. Wear 236(1), 259–275 (1999)CrossRefGoogle Scholar
  146. 146.
    C.H. Bovington, B. Dacre, The adsorption and reaction of decomposition products of zinc di-isopropyldiophosphate on steel. ASLE Trans. 27(3), 252–258 (1984)CrossRefGoogle Scholar
  147. 147.
    A. Ghanbarzadeh, P. Parsaeian, A. Morina, M.C.T. Wilson, M.C.P. van Eijk, I. Nedelcu, D. Dowson, A. Neville, A semi-deterministic wear model considering the effect of zinc dialkyl dithiophosphate tribofilm. Tribol. Lett. 61(1), 12 (2016)CrossRefGoogle Scholar
  148. 148.
    P. Parsaeian, A. Ghanbarzadeh, M. Wilson, M.C.P. Van Eijk, I. Nedelcu, D. Dowson, A. Neville, A. Morina, An experimental and analytical study of the effect of water and its tribochemistry on the tribocorrosive wear of boundary lubricated systems with ZDDP-containing oil. Wear 358, 23–31 (2016)CrossRefGoogle Scholar
  149. 149.
    P. Parsaeian, A. Ghanbarzadeh, M.C.P. Van Eijk, I. Nedelcu, A. Morina, A. Neville, Study of the interfacial mechanism of ZDDP tribofilm in humid environment and its effect on tribochemical wear; part II: numerical. Tribol. Int. 107, 33–38 (2017)CrossRefGoogle Scholar
  150. 150.
    G. Pereira, D. Munoz-Paniagua, A. Lachenwitzer, M. Kasrai, P.R. Norton, T. Weston Capehart, T.A. Perry, Y.-T. Cheng, A variable temperature mechanical analysis of ZDDP-derived antiwear films formed on 52100 steel. Wear 262(3), 461–470 (2007)CrossRefGoogle Scholar
  151. 151.
    H. Ji, M.A. Nicholls, P.R. Norton, M. Kasrai, T. Weston Capehart, T.A. Perry, Y.-T. Cheng, Zinc-dialkyldithiophosphate antiwear films: dependence on contact pressure and sliding speed. Wear 258(5), 789–799 (2005)CrossRefGoogle Scholar
  152. 152.
    Y. Shimizu, H.A. Spikes, The influence of slide–roll ratio on ZDDP tribofilm formation. Tribol. Lett. 64(2), 19 (2016)CrossRefGoogle Scholar
  153. 153.
    P.M.E. Cann, G.J. Johnston, H.A. Spikes, Formation of Thick Films by Phosphorus-Based Anti-wear Additives (Mechanical Engineering Publication Ltd, 1987), pp. 543–554Google Scholar
  154. 154.
    H. So, Y.C. Lin, The theory of antiwear for ZDDP at elevated temperature in boundary lubrication condition. Wear 177(2), 105–115 (1994)CrossRefGoogle Scholar
  155. 155.
    S.A.J.M.R.C.J.C. Bec, A. Tonck, J.-M. Georges, R.C. Coy, J.C. Bell, G.W. Roper, Relationship between mechanical properties and structures of zinc dithiophosphate anti–wear films, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 455 (The Royal Society, 1999), pp. 4181–4203Google Scholar
  156. 156.
    O.L. Warren, J.F. Graham, P.R. Norton, J.E. Houston, T.A. Michalske, Nanomechanical properties of films derived from zinc dialkyldithiophosphate. Tribol. Lett. 4(2), 189–198 (1998)CrossRefGoogle Scholar
  157. 157.
    J.F. Graham, C. McCague, P.R. Norton, Topography and nanomechanical properties of tribochemical films derived from zinc dialkyl and diaryl dithiophosphates. Tribol. Lett. 6, 149–157 (1999)CrossRefGoogle Scholar
  158. 158.
    A.J. Pidduck, G.C. Smith, Scanning probe microscopy of automotive anti-wear films. Wear 212(2), 254–264 (1997)CrossRefGoogle Scholar
  159. 159.
    L. Taylor, A. Dratva, H.A. Spikes, Friction and wear behavior of zinc dialkyldithiophosphate additive. Tribol. Trans. 43(3), 469–479 (2000)CrossRefGoogle Scholar
  160. 160.
    M. Aktary, M.T. McDermott, J. Torkelson, Morphological evolution of films formed from thermooxidative decomposition of ZDDP. Wear 247(2), 172–179 (2001)CrossRefGoogle Scholar
  161. 161.
    G.W. Canning, M.L. SuominenFuller, G.M. Bancroft, M. Kasrai, J.N. Cutler, G. De Stasio, B. Gilbert, Spectromicroscopy of tribological films from engine oil additives. Part I Films from ZDDP’s. Tribol. Lett. 6(3–4), 159–169 (1999)CrossRefGoogle Scholar
  162. 162.
    M.A. Nicholls, P.R. Norton, G.M. Bancroft, M. Kasrai, G. De Stasio, L.M. Wiese, Spatially resolved nanoscale chemical and mechanical characterization of ZDDP antiwear films on aluminum-silicon alloys under cylinder/bore wear conditions. Tribol. Lett. 18(3), 261–278 (2005)CrossRefGoogle Scholar
  163. 163.
    J. Ye, M. Kano, Y. Yasuda, Evaluation of local mechanical properties in depth in MoDTC/ZDDP and ZDDP tribochemical reacted films using nanoindentation. Tribol. Lett. 13(1), 41–47 (2002)CrossRefGoogle Scholar
  164. 164.
    J. Ye, M. Kano, Y. Yasuda, Evaluation of nanoscale friction depth distribution in ZDDP and MoDTC tribochemical reacted films using a nanoscratch method. Tribol. Lett. 16, 107–112 (2004)CrossRefGoogle Scholar
  165. 165.
    J. Ye, M. Kano, Y. Yasuda, Friction property study of the surface of ZDDP and MoDTC antiwear additive films using AFM/LFM and force curve methods. Tribotest 9(1), 13–21 (2002)CrossRefGoogle Scholar
  166. 166.
    J. Ye, M. Kano, Y. Yasuda, Determination of nanostructures and mechanical properties on the surface of molybdenum dithiocarbamate and zinc dialkyl-dithiophosphate tribochemical reacted films using atomic force microscope phase imaging technique. J. Appl. Phys. 93(9), 5113–5117 (2003)CrossRefGoogle Scholar
  167. 167.
    K.T. Miklozic, J. Graham, H. Spikes, Chemical and physical analysis of reaction films formed by molybdenum dialkyl-dithiocarbamate friction modifier additive using raman and atomic force microscopy. Tribol. Lett. 11(2), 71–81 (2001)CrossRefGoogle Scholar
  168. 168.
    C.C. Chou, J.F. Lin, A new approach to the effect of EP additive and surface roughness on the pitting fatigue of a line-contact system. J. Tribol. 124(2), 245–258 (2002)CrossRefGoogle Scholar
  169. 169.
    M.A. Nicholls, T. Do, P.R. Norton, G. Michael Bancroft, M. Kasrai, T. Weston Capehart, Y.-T. Cheng, T. Perry, Chemical and mechanical properties of ZDDP antiwear films on steel and thermal spray coatings studied by XANES spectroscopy and nanoindentation techniques. Tribol. Lett. 15(3), 241–248 (2003)CrossRefGoogle Scholar
  170. 170.
    K.D. Costa, Single-cell elastography: probing for disease with the atomic force microscope. Dis. Markers 19(2–3), 139–154 (2004)CrossRefGoogle Scholar
  171. 171.
    P. Parsaeian, A. Ghanbarzadeh, M.C.P. Van Eijk, I. Nedelcu, A. Neville, A. Morina, A new insight into the interfacial mechanisms of the tribofilm formed by zinc dialkyl dithiophosphate. Appl. Surf. Sci. 403, 472–486 (2017)CrossRefGoogle Scholar
  172. 172.
    M.C. Friedenberg, C. Mathew Mate, Dynamic viscoelastic properties of liquid polymer films studied by atomic force microscopy. Langmuir 12(25), 6138–6142 (1996)CrossRefGoogle Scholar
  173. 173.
    J.-M. Georges, A. Tonck, S. Poletti, E.S. Yamaguchi, P.R. Ryason, Film thickness and mechanical properties of adsorbed neutral and basic zinc diisobutyl dithiophosphates. Tribol. Trans. 41(4), 543–553 (1998)CrossRefGoogle Scholar
  174. 174.
    I. Neitzel, V. Mochalin, J.A. Bares, R.W. Carpick, A. Erdemir, Y. Gogotsi, Tribological properties of nanodiamond-epoxy composites. Tribol. Lett. 47(2), 195–202 (2012)CrossRefGoogle Scholar
  175. 175.
    L.J. Taylor, H.A. Spikes, Friction-enhancing properties of ZDDP antiwear additive: part I—friction and morphology of ZDDP reaction films. Tribol. Trans. 46(3), 303–309 (2003)CrossRefGoogle Scholar
  176. 176.
    D. Mazuyer, A. Tonck, S. Bec, J.L. Loubet, J.M. Georges, Nanoscale surface rheology in tribology. Tribol. Ser. 39, 273–282 (2001)CrossRefGoogle Scholar
  177. 177.
    J.-M. Georges, A. Tonck, J.-L. Loubet, D. Mazuyer, E. Georges, F. Sidoroff, Rheology and friction of compressed polymer layers adsorbed on solid surfaces. J. Phys. II 6(1), 57–76 (1996)Google Scholar
  178. 178.
    Q. Li, C. Lee, R.W. Carpick, J. Hone, Substrate effect on thickness-dependent friction on graphene. Physica Status Solidi (b) 247(11–12), 2909–2914 (2010)CrossRefGoogle Scholar
  179. 179.
    C. Lee, X. Wei, Q. Li, R. Carpick, J.W. Kysar, J. Hone, Elastic and frictional properties of graphene. Physica Status Solidi (b) 246(11–12), 2562–2567 (2009)CrossRefGoogle Scholar
  180. 180.
    C. Lee, Q. Li, W. Kalb, X.-Z. Liu, H. Berger, R.W. Carpick, J. Hone, Frictional characteristics of atomically thin sheets. Science 328(5974), 76–80 (2010)CrossRefGoogle Scholar
  181. 181.
    J. Gansheimer, On the lubricating properties of mixtures of mineral oil with certain inorganic phosphates, hydroxides, and sulfides. ASLE Trans. 15(3), 201–206 (1972)CrossRefGoogle Scholar
  182. 182.
    D. Landolt, S. Mischler, Tribocorrosion of Passive Metals and Coatings (Elsevier, Amsterdam, 2011)CrossRefGoogle Scholar
  183. 183.
    M. Duncanson, Detecting and controlling water in oil, in Proceedings of Noria Lubrication Excellence 2005 Conference, San Antonio, Texas, 25–29 April 2005Google Scholar
  184. 184.
    A.C. Eachus, The trouble with water. Tribol. Lubr. Technol. 61(10), 32–38 (2005)Google Scholar
  185. 185.
    P.E. Sheehan, The wear kinetics of NaCl under dry nitrogen and at low humidities. Chem. Phys. Lett. 410(1), 151–155 (2005)CrossRefGoogle Scholar
  186. 186.
    P. Parsaeian, M.C.P. Van Eijk, I. Nedelcu, A. Neville, A. Morina, Study of the interfacial mechanism of ZDDP tribofilm in humid environment and its effect on tribochemical wear; part I: experimental. Tribol. Int. 107, 135–143 (2017)CrossRefGoogle Scholar
  187. 187.
    O.D. Faut, D.R. Wheeler, On the mechanism of lubrication by tricresylphosphate (TCP)—the coefficient of friction as a function of temperature for TCP on M-50 steel. ASLE Trans. 26(3), 344–350 (1983)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering, Institute of Functional SurfacesUniversity of LeedsLeedsUK

Personalised recommendations