Advertisement

In-Situ Measurement of Tribochemical Processes in Ultrahigh Vacuum

  • Wilfred T. Tysoe
Chapter
Part of the Microtechnology and MEMS book series (MEMS)

Abstract

Monitoring chemical reactions occurring at a solid-solid interface is particularly challenging because of the problem of analyzing a buried interface with surface-sensitive spectroscopic techniques. This can, to some extent, be addressed if one of the contacting materials is transparent. In the case of optically opaque materials that are often of the greatest tribological interest, truly in-situ techniques are limited to the detection of gas-phase products formed by rubbing in high vacuum using a mass spectrometer, or by monitoring the contact resistance or friction coefficient variations during sliding. Optical techniques such as infrared spectroscopy can be used when one of the materials is transparent. The results of such in-situ analyses can be corroborated by using so-called pseudo in-situ techniques to analyze the surfaces after rubbing without exposing the samples to the atmosphere. Examples of such techniques are Auger spectroscopy and low-energy electron diffraction. Finally, the use of these approaches is illustrated using a simple model tribochemical reaction consisting of the gas-phase lubrication of copper by dimethyl disulfide.

References

  1. 1.
    T.J. Blunt, P.V. Kotvis, W.T. Tysoe, Determination of interfacial temperatures under extreme pressure conditions. Tribol. Lett. 2(3), 221–230 (1996)Google Scholar
  2. 2.
    K. Holmberg, P. Andersson, A. Erdemir, Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234CrossRefGoogle Scholar
  3. 3.
    K.J. Laidler, Chemical kinetics (McGraw-Hill, New York, 1965)Google Scholar
  4. 4.
    O.A. Mazyar, H. Xie, W.L. Hase, Nonequilibrium energy dissipation at the interface of sliding model hydroxylated α-alumina surfaces. J Chem. Phys. 122(9), 094713 (2005)CrossRefGoogle Scholar
  5. 5.
    W.G. Sawyer, K.J. Wahl, Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bulletin 33(12), 1145–1150 (2008)CrossRefGoogle Scholar
  6. 6.
    S. Mori, W. Morales, Tribological reactions of perfluoroalkyl polyether oils with stainless steel under ultrahigh vacuum conditions at room temperature. Wear 132(1), 111–121 (1989).  https://doi.org/10.1016/0043-1648(89)90206-8CrossRefGoogle Scholar
  7. 7.
    I. Minami, T. Kubo, S. Fujiwara, Y. Ogasawara, H. Nanao, S. Mori, Investigation of tribo-chemistry by means of stable isotopic tracers: TOF-SIMS analysis of langmuir-Blodgett films and examination of their tribological properties. Tribol. Lett. 20(3–4), 287–297 (2005).  https://doi.org/10.1007/s11249-005-9068-2CrossRefGoogle Scholar
  8. 8.
    H.L. Adams, M.T. Garvey, U.S. Ramasamy, Z. Ye, A. Martini, W.T. Tysoe, Shear-induced mechanochemistry: Pushing molecules around. J. Phys. Chem. C 119(13), 7115–7123 (2015).  https://doi.org/10.1021/jp5121146CrossRefGoogle Scholar
  9. 9.
    P.A. Redhead, Thermal desorption of gases. Vacuum 12, 9 (1962)CrossRefGoogle Scholar
  10. 10.
    O.J. Furlong, B.P. Miller, Z. Li, J. Walker, L. Burkholder, W.T. Tysoe, The surface chemistry of dimethyl disulfide on copper. Langmuir 26(21), 16375–16380 (2010).  https://doi.org/10.1021/la101769yCrossRefGoogle Scholar
  11. 11.
    O. Furlong, B. Miller, Z. Li, W.T. Tysoe, The surface chemistry of diethyl disulfide on copper. Surf. Sci. 605(5–6), 606–611 (2011).  https://doi.org/10.1016/j.susc.2010.12.026CrossRefGoogle Scholar
  12. 12.
    O. Furlong, B. Miller, W. Tysoe, Shear-induced surface-to-bulk transport at room temperature in a sliding metal-metal interface. Tribol. Lett. 41(1), 257–261 (2011).  https://doi.org/10.1007/s11249-010-9711-4CrossRefGoogle Scholar
  13. 13.
    R.G. Greenler, Reflection method for obtaining the infrared spectrum of a thin layer on a metal surface. J. Chem. Phys. 50(5), 1963–1968 (1969).  https://doi.org/10.1063/1.1671315CrossRefGoogle Scholar
  14. 14.
    G. Wu, F. Gao, M. Kaltchev, J. Gutow, J.K. Mowlem, W.C. Schramm, P.V. Kotvis, W.T. Tysoe, An investigation of the tribological properties of thin KCl films on iron in ultrahigh vacuum: modeling the extreme-pressure lubricating interface. Wear 252(7–8), 595–606 (2002)CrossRefGoogle Scholar
  15. 15.
    J.R. Felts, A.J. Oyer, S.C. Hernández, K.E. Whitener Jr., J.T. Robinson, S.G. Walton, P.E. Sheehan, Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, 6467 (2015).  https://doi.org/10.1038/ncomms7467
  16. 16.
    A. Cameron, R. Gohar, Theoretical and experimental studies of the oil film in lubricated point contact. ‎Proc. Royal Soc. A Mathematical, Phys. Eng. Sci. 291(1427), 520–536 (1966)Google Scholar
  17. 17.
    P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Surface-enhanced Raman spectroscopy. ‎Annu. Rev. Anal. Chem. 1(1), 601–626 (2008)CrossRefGoogle Scholar
  18. 18.
    R.G. Greenler, Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys. 44(1), 310–315 (1966).  https://doi.org/10.1063/1.1726462CrossRefGoogle Scholar
  19. 19.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1978)Google Scholar
  20. 20.
    N.B. Colthup, L.H. Daly, S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 2nd edn. (Academic Press, New York, 1975)CrossRefGoogle Scholar
  21. 21.
    F.M. Piras, A. Rossi, N.D. Spencer, Growth of tribological films: a in situ characterization based on attenuated total reflection infrared spectroscopy. Langmuir 18(17), 6606–6613 (2002)CrossRefGoogle Scholar
  22. 22.
    F. Mangolini, A. Rossi, N.D. Spencer, Chemical reactivity of triphenyl phosphorothionate (TPPT) with Iron: an ATR/FT-IR and XPS investigation. J. Phys. Chem. C 115(4), 1339–1354 (2010)CrossRefGoogle Scholar
  23. 23.
    E.H. Sondheimer, The mean free path of electrons in metals. Adv. Phys. 50(6), 499–537 (2001).  https://doi.org/10.1080/00018730110102187CrossRefGoogle Scholar
  24. 24.
    B. Briggs, M.P. Seah, Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy (Wiley, New York, 1996)Google Scholar
  25. 25.
    J.C. Vickerman, Surface Analysis: The Principal Techniques (Wiley, Chichester, 1997)Google Scholar
  26. 26.
    T.W. Haas, J.T. Grant, G.J. Dooley III, Chemical effects in auger electron spectroscopy. J. Appl. Phys. 43(4), 1853–1860 (1972)CrossRefGoogle Scholar
  27. 27.
    S. Mroczkowski, D. Lichtman, Calculated Auger yields and sensitivity factors for KLL–NOO transitions with 1–10 kV primary beams. J. Vac. Sci. Technol. A: Vac. Surf. Films 3(4), 1860–1865 (1985)CrossRefGoogle Scholar
  28. 28.
    L.D. Broglie, A tentative theory of light quanta. Philos. Mag. Ser. 6 47(278), 446–458 (1924).  https://doi.org/10.1080/14786442408634378CrossRefGoogle Scholar
  29. 29.
    C. Davisson, L.H. Germer, Diffraction of electrons by a crystal of nickel. Phys. Rev. 30(6), 705–740 (1927)CrossRefGoogle Scholar
  30. 30.
    J.B. Pendry, Low Energy Electron Diffraction : The Theory and Its Application to Determination of Surface Structure (Academic Press, London, 1974)Google Scholar
  31. 31.
    D.H. Buckley, A LEED Study of the Adhesion of Gold to Copper and Copper-Aluminum Alloys. NASA Technical Report NASA-TN-D-5351 (1969)Google Scholar
  32. 32.
    N.N. Gosvami, J.A. Bares, F. Mangolini, A.R. Konicek, D.G. Yablon, R.W. Carpick, Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science (2015).  https://doi.org/10.1126/science.1258788CrossRefGoogle Scholar
  33. 33.
    J. Zhang, H. Spikes, On the Mechanism of ZDDP antiwear film formation. Tribol. Lett. 63(2), 1–15 (2016).  https://doi.org/10.1007/s11249-016-0706-7
  34. 34.
    W. Davey, E.D. Edwards, The extreme-pressure lubricating properties of some sulphides and disulphides, in mineral oil, as assessed by the four-ball machine. Wear 1(4), 291–304 (1958).  https://doi.org/10.1016/0043-1648(58)90002-4CrossRefGoogle Scholar
  35. 35.
    E.S. Forbes, The load-carrying action of organo-sulphur compounds—A review. Wear 15(2), 87–96 (1970).  https://doi.org/10.1016/0043-1648(70)90002-5CrossRefGoogle Scholar
  36. 36.
    M. Kaltchev, P.V. Kotvis, T.J. Blunt, J. Lara, W.T. Tysoe, A molecular beam study of the tribological chemistry of dialkyl disulfides. Tribol. Lett. 10(1), 45–50 (2001).  https://doi.org/10.1023/a:1009020725936CrossRefGoogle Scholar
  37. 37.
    J. Lara, T. Blunt, P. Kotvis, A. Riga, W.T. Tysoe, Surface chemistry and extreme-pressure lubricant properties of dimethyl disulfide. J. Phys. Chem. B 102(10), 1703–1709 (1998).  https://doi.org/10.1021/jp980238yCrossRefGoogle Scholar
  38. 38.
    O.J. Furlong, B.P. Miller, P. Kotvis, W.T. Tysoe, Low-temperature, Shear-induced tribofilm formation from dimethyl disulfide on copper. ‎ACS Appl. Mater. Interfaces 3(3), 795–800 (2011)CrossRefGoogle Scholar
  39. 39.
    O.J. Furlong, B.P. Miller, P. Kotvis, W.T. Tysoe, Low-temperature, shear-induced tribofilm formation from dimethyl disulfide on copper. ACS Appl. Mater. Interfaces 3(3), 795–800 (2011).  https://doi.org/10.1021/am101149pCrossRefGoogle Scholar
  40. 40.
    D.A. Rigney, Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245(1–2), 1–9 (2000).  https://doi.org/10.1016/s0043-1648(00)00460-9CrossRefGoogle Scholar
  41. 41.
    X.-Y. Fu, D.A. Rigney, M.L. Falk, Sliding and deformation of metallic glass: Experiments and MD simulations. J. Non-Cryst. Solids 317(1–2), 206–214 (2003).  https://doi.org/10.1016/s0022-3093(02)01999-3CrossRefGoogle Scholar
  42. 42.
    H.J. Kim, W.K. Kim, M.L. Falk, D.A. Rigney, MD simulations of microstructure evolution during high-velocity sliding between crystalline materials. Tribol. Lett. 28(3), 299–306 (2007).  https://doi.org/10.1007/s11249-007-9273-2CrossRefGoogle Scholar
  43. 43.
    A. Emge, S. Karthikeyan, H.J. Kim, D.A. Rigney, The effect of sliding velocity on the tribological behavior of copper. Wear 263, 614–618 (2007).  https://doi.org/10.1016/j.wear.2007.01.095CrossRefGoogle Scholar
  44. 44.
    S. Karthikeyan, H.J. Kim, D.A. Rigney, Velocity and strain-rate profiles in materials subjected to unlubricated sliding. Phys. Rev. Lett. 95(10), 106001 (2005).  https://doi.org/10.1103/physrevlett.95.106001
  45. 45.
    A. Mishra, M. Martin, N.N. Thadhani, B.K. Kad, E.A. Kenik, M.A. Meyers, High-strain-rate response of ultra-fine-grained copper. Acta Mater. 56(12), 2770–2783 (2008).  https://doi.org/10.1016/j.actamat.2008.02.023CrossRefGoogle Scholar
  46. 46.
    M.A. Meyers, A. Mishra, D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427–556 (2006).  https://doi.org/10.1016/j.pmatsci.2005.08.003CrossRefGoogle Scholar
  47. 47.
    A. Mishra, B.K. Kad, F. Gregori, M.A. Meyers, Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta Mater. 55(1), 13–28 (2007).  https://doi.org/10.1016/j.actamat.2006.07.008CrossRefGoogle Scholar
  48. 48.
    T. Zhu, J. Li, A. Samanta, H.G. Kim, S. Suresh, Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals. Proc. Natl. Acad. Sci. 104(9), 3031–3036 (2007).  https://doi.org/10.1073/pnas.0611097104CrossRefGoogle Scholar
  49. 49.
    R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh, Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159–5172 (2003).  https://doi.org/10.1016/s1359-6454(03)00365-3CrossRefGoogle Scholar
  50. 50.
    Y.F. Shen, L. Lu, M. Dao, S. Suresh, Strain rate sensitivity of Cu with nanoscale twins. Scripta Mater. 55(4), 319–322 (2006).  https://doi.org/10.1016/j.scriptamat.2006.04.046CrossRefGoogle Scholar
  51. 51.
    H.W. Höppel, J. May, M. Göken, Enhanced strength and ductility in ultrafine-grained aluminium produced by accumulative roll bonding. Adv. Eng. Mater. 6(9), 781–784 (2004).  https://doi.org/10.1002/adem.200306582CrossRefGoogle Scholar
  52. 52.
    G.T. Gray III, T.C. Lowe, C.M. Cady, R.Z. Valiev, I.V. Aleksandrov, Influence of strain rate and temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al–4Cu–0.5Zr. Nanostruct. Mater. 9(1–8), 477–480 (1997).  https://doi.org/10.1016/s0965-9773(97)00104-9CrossRefGoogle Scholar
  53. 53.
    B. Miller, O. Furlong, W. Tysoe, The kinetics of shear-induced boundary film formation from dimethyl disulfide on copper. Tribol. Lett. 49(1), 39–46 (2013).  https://doi.org/10.1007/s11249-012-0040-7CrossRefGoogle Scholar
  54. 54.
    H. Adams, B.P. Miller, P.V. Kotvis, O.J. Furlong, A. Martini, W.T. Tysoe, In situ measurements of boundary film formation pathways and kinetics: Dimethyl and diethyl disulfide on copper. Tribol. Lett. 62(1), 1–9 (2016).  https://doi.org/10.1007/s11249-016-0664-0
  55. 55.
    P.J. Cumpson, Angle-resolved XPS and AES: Depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods. J. Electron Spectrosc. Relat. Phenom. 73(1), 25–52 (1995).  https://doi.org/10.1016/0368-2048(94)02270-4CrossRefGoogle Scholar
  56. 55.
    G. Bell, Models for the specific adhesion of cells to cells. Science 200(4342), 618–627 (1978).  https://doi.org/10.1126/science.347575CrossRefGoogle Scholar
  57. 57.
    H. Spikes, W. Tysoe, On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribol. Lett. 59(1), 1–14 (2015).  https://doi.org/10.1007/s11249-015-0544-z

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of Wisconsin MilwaukeeMilwaukeeUSA

Personalised recommendations