Advertisement

Analyzing Mild- and Ultra-Mild Sliding Wear of Metallic Materials by Transmission Electron Microscopy

  • Alfons Fischer
  • Wlodzimierz Dudzinski
  • Birgit Gleising
  • Priska Stemmer
Chapter
Part of the Microtechnology and MEMS book series (MEMS)

Abstract

Any understanding of tribological behavior is connected to sound analyses of the wear appearances, which render insight into the acting wear mechanisms and their sub-mechanisms. Today one important method to analyze wear appearances at high resolution is transmission electron microscopy (TEM) being invented by Knoll and Ruska in the early 1930th in Berlin (Knoll in Z fuer Phys 78:318–339, 1932 [1]).

Abbreviations and Terms

AES

Auger atom emission spectroscopy

AFM

Atomic force microscopy

ECC

Electron channeling contrast

EDS

Energy dispersive X-ray spectroscopy

EELS

Electron energy loss spectroscopy

EFTEM

Energy filtered transmission electron microscopy

FIB

Focussed ion beam

KAM

Kernel average missorientation

MD

Molecular dynamics computer simulation

RS

Raman-spectroscopy

SEM

Scanning electron microscopy

TEM

Transmission electron microscopy

BF

Bright field image

DF

Dark field image

DP

Diffraction pattern

XPS

X-ray photoelectron spectroscopy

nc

Nano-crystalline <100 nm

ufc

Ultrafine-crystalline 100–500 nm

µc

Micro-crystalline 500 nm

Supplementary material

References

  1. 1.
    M. Knoll, E. Ruska, Das Elektronenmikroskop. Z. fuer Phys. 78, 318–339 (1932)CrossRefGoogle Scholar
  2. 2.
    R.F. Deacon, J.F. Goodman, Lubrication by lamellar solids. Proc. R. Soc. Lond. Math. Phys. Eng. Sci. 243, 464–482 (1958)CrossRefGoogle Scholar
  3. 3.
    F.P. Bowden, A.J.W. Moore, D. Tabor, The ploughing and adhesion of sliding metals. J. Appl. Phys. 14, 80–91 (1943)CrossRefGoogle Scholar
  4. 4.
    R.S. Plumb, W.A. Glaeser, Wear prevention in molds used to mold boron filled elastomers. Wear 46, 219–229 (1966)CrossRefGoogle Scholar
  5. 5.
    D.A. Rigney, W.A. Glaeser, The significance of near surface microstructure in the wear process. Wear 46, 241–250 (1978)CrossRefGoogle Scholar
  6. 6.
    P.A. Higham, F.H. Stott, B. Bethune, Mechanisms of wear of the metal surface during fretting corrosion of steel on polymers. Corros. Sci. 18, 3–13 (1978)CrossRefGoogle Scholar
  7. 7.
    P. Heilmann, J. Don, T.C. Sun, D.A. Rigney, W.A. Glaeser, Sliding wear and transfer. Wear 91, 171–190 (1983)CrossRefGoogle Scholar
  8. 8.
    S.B. Newcomb, W.M. Stobbs, A transmission electron microscopy study of the white-etching layer on a rail head. Mater. Sci. Eng. 66, 195–204 (1984)CrossRefGoogle Scholar
  9. 9.
    N. Ohmae, T. Nakai, T. Tsukizoe, Prevention of fretting by ion plated film. Wear 30, 299–309 (1974)CrossRefGoogle Scholar
  10. 10.
    J.M. Martin, J.L. Mansot, I. Berbezier, H. Dexpert, The nature and origin of wear particles from boundary lubrication with a zinc dialkyl dithiophosphate. Wear 93, 117–126 (1984)CrossRefGoogle Scholar
  11. 11.
    K.H.Z. Gahr, Formation of wear debris by the abrasion of ductile metals. Wear 74, 353–373 (1981)CrossRefGoogle Scholar
  12. 12.
    J.J. Wert, F. Srygley, C.D. Warren, R.D. McReynolds, Influence of long-range order on deformation induced by sliding wear. Wear 134, 115–148 (1989)CrossRefGoogle Scholar
  13. 13.
    W.M. Rainforth, R. Stevens, J. Nutting, Deformation structures induced by sliding contact. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop., 66, 621–641 (1992)CrossRefGoogle Scholar
  14. 14.
    C. Greiner, Z. Liu, L. Strassberger, P. Gumbsch, Sequence of stages in the microstructure evolution in copper under mild reciprocating tribological loading. ACS Appl. Mater. Interfaces 8, 15809–15819 (2016)CrossRefGoogle Scholar
  15. 15.
    H. Czichos, D. Dowson, Tribology: a systems approach to the science and technology of friction, lubrication and wear. Tribol. Int. 11, 259–260 (1978)CrossRefGoogle Scholar
  16. 16.
    H. Czichos, Wear mechanisms in tribological systems, in Overview and Classification, ed. by K.F. Ehmann (Publ by ASME, New Orleans, LA, USA, 1993), pp. 239–241Google Scholar
  17. 17.
    A. Fischer, Well-founded selection of materials for improved wear resistance. Wear 194, 238–245 (1996)CrossRefGoogle Scholar
  18. 18.
    K.H. Zum Gahr, Microstructure and Wear of Materials (Elsevier Science Publishers, Amsterdam, The Netherlands, 1987)Google Scholar
  19. 19.
    M.E. Sikorski, The adhesion of metals and factors that influence it. Wear 7, 144–162 (1964)CrossRefGoogle Scholar
  20. 20.
    T.F.J. Quinn, NASA Interdisciplinary Collaboration in Tribology. A Review of Oxidational Wear (Georgia Inst. Technol, 1983)Google Scholar
  21. 21.
    S. Jahanmir, N.P. Suh, E.P. Abrahamson II, The delamination theory of wear and the wear of a composite surface. Wear 32, 33–49 (1975)CrossRefGoogle Scholar
  22. 22.
    D. Landolt, S. Mischler, M. Stemp, Electrochemical methods in tribocorrosion: a critical appraisal. Electrochim. Acta 46, 3913–3929 (2001)CrossRefGoogle Scholar
  23. 23.
    M.A. Wimmer, J. Loos, M. Heitkemper, A. Fischer, The acting wear mechanisms on metal-on-metal hip joint bearings—in-vitro results. Wear 250, 129–139 (2001)CrossRefGoogle Scholar
  24. 24.
    D.A. Rigney, J.E. Hammerberg, Mechanical mixing and the development of nanocrystalline material during the sliding of metals., in Advanced Materials in the 21st Century: The 1999 Julia R. Weertman Symposium, The Minerals, Metals & Materials Society, ed. by Y.W. Chung, D.C. Dunand, P. Liaw, G.B. Olson (Warrendale, PA, USA, 1999), pp. 465–474Google Scholar
  25. 25.
    A. Fischer, S. Weiss, M.A. Wimmer, The tribological difference between biomedical steels and CoCrMo-alloys. J. Mech. Behav. Biomed. Mater. 1, 50–62 (2012)CrossRefGoogle Scholar
  26. 26.
    M.A. Wimmer, M.P. Laurent, M.T. Mathew, C. Nagelli, Y. Liao, L.D. Marks, J.J. Jacobs, A. Fischer, The effect of contact load on CoCrMo wear and the formation and retention of tribofilms. Wear 332–333, 643–649 (2015)CrossRefGoogle Scholar
  27. 27.
    Y. Liao, R. Pourzal, M.A. Wimmer, J.J. Jacobs, A. Fischer, L.D. Marks, Graphitic tribological layers in metal-on-metal hip replacements. Science 334, 1687–1690 (2011)CrossRefGoogle Scholar
  28. 28.
    M.A. Wimmer, A. Fischer, R. Buscher, R. Pourzal, C. Sprecher, R. Hauert, J.J. Jacobs, Wear mechanisms in metal-on-metal bearings: the importance of tribochemical reaction layers. J. Orthop. Res. 28, 436–443 (2010)Google Scholar
  29. 29.
    R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511–516 (2004)CrossRefGoogle Scholar
  30. 30.
    G. Schmaltz, Technische Oberflächenkunde; Feingestalt und Eigenschaften von Grenzflächen technischer Körper, insbesondere der Maschinenteile, J. (Springer, Berlin, Germany, 1936)CrossRefGoogle Scholar
  31. 31.
    R. Büscher, Gefügeumwandlungen und Partikelbildung in künstlichen Metall/Metall-Hüftgelenken, Werkstofftechnik, PhD-Thesis, Universität Duisburg-Essen, Germany, s.a. VDI-Fortschr.Ber., Reihe 17, Nr.256, (VDI-Verlag, Düsseldorf, Germany, 2005)Google Scholar
  32. 32.
    R. Glardon, S. Chavez, I. Finnie, Simuation of sliding wear by cyclic plastic deformation under combined stresses. J. Eng. Mater. Technol. Trans. ASME 106, 248–252 (1984)CrossRefGoogle Scholar
  33. 33.
    W.A. Glaeser, Transmission electron microscopy on wear debris from bronze bearings. Wear 43, 393–394 (1977)CrossRefGoogle Scholar
  34. 34.
    W.J. Saleski, R.M. Fisher, R.O. Ritchie, G. Thomas, The nature and origin of sliding wear debris from steels, in Wear of Materials ‘83 ed. by K.C. Ludema, (ASME, 345 East 47th Street, New York, N.Y. 10017, USA, Reston, VA, USA, 1983), pp. 434–445Google Scholar
  35. 35.
    M. Schymura, R. Stegemann, A. Fischer, Crack propagation behavior of solution annealed austenitic high interstitial steels. Int. J. Fatigue 79, 25–35 (2015)CrossRefGoogle Scholar
  36. 36.
    N. Jost, I. Schmidt, Friction-induced martensitic transformation in austenitic manganese steels. Wear 111, 377–389 (1986)CrossRefGoogle Scholar
  37. 37.
    Z.M. He, Q.C. Jiang, S.B. Fu, J.P. Xie, Improved work-hardening ability and wear resistance of austenitic manganese steel under non-severe impact-loading conditions. Wear 120, 305–319 (1987)CrossRefGoogle Scholar
  38. 38.
    C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Q.Q. Duan, Z.F. Zhang, A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: importance of slip mode. Acta Mater. 118, 196–212 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Brink, Einlaufverhalten von geschmierten Stahl-Stahl PAarungen unter Berücksichtigung der Mikrostruktur., PhD-Thesis, Institut für Angewandte Materialien - Computational Materials Science (Karlsruhe Institute of Technology, Karlsruhe, Germany, 2015)Google Scholar
  40. 40.
    D. Stickel, A. Fischer, The influence of topography on the specific dissipated friction power in ultra-mild sliding wear: experiment and simulation. Tribol. Int. 91, 48–59 (2015)CrossRefGoogle Scholar
  41. 41.
    J.F. Archard, W. Hirst, An examination of a mild wear process, Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 238, 515–530 (1957)CrossRefGoogle Scholar
  42. 42.
    M. Godet, The third-body approach: a mechanical view of wear. Wear 100, 437–452 (1984)CrossRefGoogle Scholar
  43. 43.
    A. Fischer, D. Stickel, C. Schoss, R. Bosman, M. Wimmer, The growth rate of tribomaterial in bovine serum lubricated sliding contacts. Lubricants 4, 21 (2016)CrossRefGoogle Scholar
  44. 44.
    N. Beckmann, P.A. Romero, D. Linsler, M. Dienwiebel, U. Stolz, M. Moseler, P. Gumbsch, Origins of folding instabilities on polycrystalline metal surfaces. Phys. Rev. Appl. 2, 064004 (2014)CrossRefGoogle Scholar
  45. 45.
    W.M. Rainforth, R. Stevens, J. Nutting, Deformation structures induced by sliding contact. Philos. Mag. A 66, 621–641 (1992)CrossRefGoogle Scholar
  46. 46.
    D.A. Rigney, J.E. Hammerberg, Unlubricated sliding behavior of metals. MRS Bull. 23, 32–36 (1998)CrossRefGoogle Scholar
  47. 47.
    R. Büscher, A. Fischer, The pathways of dynamic recrystallization in all-metal hip joints. Wear 259, 887–897 (2005)CrossRefGoogle Scholar
  48. 48.
    R. Pourzal, R. Theissmann, M. Morlock, A. Fischer, Micro-structural alterations within different areas of articulating surfaces of a metal-on-metal hip resurfacing system. Wear 267, 689–694 (2009)CrossRefGoogle Scholar
  49. 49.
    M. Hahn, R. Theissmann, B. Gleising, W. Dudzinski, A. Fischer, Microstructural alterations within thermal spray coatings during highly loaded diesel engine tests. Wear 267, 916–924 (2009)CrossRefGoogle Scholar
  50. 50.
    D.A. Rigney, The role of characterization in understanding debris generation, in Tribology Series; Wear Particles: Frorn the Cradle to the Grave, Proceedings of the 18th Leeds-Lyon Symposium on Tribology ed. by D. Dowson, C.M. Taylor, T.H.C. Childs, M. Godet, G. Dalmaz (Lyon, France, 1992), pp. 405–412Google Scholar
  51. 51.
    I. Catelas, J.J. Jacobs, Biologic activity of wear particles. Instr. Course Lect. 59, 3–16 (2010)Google Scholar
  52. 52.
    H.G. Willert, H. Bertram, G. Hans Buchhorn, Osteolysis in alloarthroplasty of the hip: the role of ultra-high molecular weight polyethylene wear particles. Clin. Orthop. Relat. Res. 95–107 (1990)Google Scholar
  53. 53.
    H.G. Willert, G.H. Buchhorn, C.H. Lohmann, Hypersensitivity to CoCrMo-debris from metal/metal hip endoprostheses, in Transactions—7th World Biomaterials Congress, Sydney, (2004), p. 486Google Scholar
  54. 54.
    P.R. Doorn, P.A. Campbell, J. Worrall, P.D. Benya, H.A. McKellop, H.C. Amstutz, Metal wear particle characterization from metal on metal V total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J. Biomed. Mater. Res. 42, 103–111 (1998)CrossRefGoogle Scholar
  55. 55.
    I. Catelas, J.B. Medley, P.A. Campbell, O.L. Huk, J.D. Bobyn, Comparison of in vitro with in vivo characteristics of wear particles from metal-metal hip implants. J. Biomed. Mater. Res. Part B Appl. Biomater. 70, 167–178 (2004)CrossRefGoogle Scholar
  56. 56.
    R. Büscher, G. Täger, W. Dudzinski, B. Gleising, M.A. Wimmer, A. Fischer, Subsurface microstructure of metal-on-metal hip joints and its relationship to wear particle generation. J. Biomed. Mater. Res. Part B Appl. Biomater. 72, 206–214 (2005)CrossRefGoogle Scholar
  57. 57.
    F. Billi, P. Campbell, Nanotoxicology of metal wear particles in total joint arthroplasty: a review of current concepts. J. Appl. Biomater. Biomech. 8, 1–6 (2010)Google Scholar
  58. 58.
    P. Stemmer, R. Pourzal, Y. Liao, L. Marks, M. Morlock, J.J. Jacobs, M.A. Wimmer, A. Fischer, Microstructure of retrievals made from standard cast HC-CoCrMo alloys, in ASTM STP 1560 Metal-on-Metal Total Hip Replacement Devices, ed. by S.M. Kurtz, A.S. Greenwald, W.M. Mihalko, J.E. Clemson (ASTM, West Conshohocken, 2013), pp. 251–267CrossRefGoogle Scholar
  59. 59.
    R. Pourzal, I. Catelas, R. Theissmann, C. Kaddick, A. Fischer, Characterization of wear particles generated from CoCrMo alloy under sliding wear conditions. Wear 271, 1658–1666 (2011)CrossRefGoogle Scholar
  60. 60.
    R. Pourzal, Possible pathways of particle formation in CoCrMo sliding wear. Ph.D.-thesis University Duisburg-Essen, Duisburg, Germany, VDI Verlag, s.a. Fortschr Ber VDI Z, 17(285), Düsseldorf, Germany (2011)Google Scholar
  61. 61.
    Y. Liao, L. Marks, Direct observation of layer-by-layer wear. Tribol. Lett. 59, 1–11 (2015)CrossRefGoogle Scholar
  62. 62.
    P. Stoyanov, P. Stemmer, T.T. Järvi, R. Merz, P.A. Romero, M. Scherge, M. Kopnarski, M. Moseler, A. Fischer, M. Dienwiebel, Friction and wear mechanisms of tungsten-carbon systems: a comparison of dry and lubricated conditions. ACS Appl. Mater. Interfaces 5, 6123–6135 (2013)CrossRefGoogle Scholar
  63. 63.
    R. Büscher, B. Gleising, W. Dudzinski, A. Fischer, Transmission electron microscopy examinations on explanted metal-on-metal hip joints. Prakt. Metallogr./Pract. Metallogr. 42, 15–34 (2005)Google Scholar
  64. 64.
    M. Hahn, Mikrostrukturelle Veränderungen in der Zylinderlaufbahn von PKW Dieselmotoren aus Grauguss und mittels thermischer Spritzverfahren hergestellter Stahlschichten. Dissertation Universität Duisburg-Essen, 2013s.a. Fortschr.-Ber. VDI Reihe 5: Grund- und Werkstoffe/Kunststoffe, Nr. 750 (VDI-Verlag, Düsseldorf, Germany, 2013)Google Scholar
  65. 65.
    P. Stemmer, The divergent pathways and mechanisms of energy dissipation at the interfaces of martensitic tribocouples. Ph.D.-thesis, Materials Science and Engineering, University of Duisburg-Essen, Germany, DuEPublico ID: 42437 (2016)Google Scholar
  66. 66.
    I. Catelas, J. Dennis Bobyn, J.B. Medley, J.J. Krygier, D.J. Zukor, A. Petit, O.L. Huk, Effects of digestion protocols on the isolation and characterization of metal-metal wear particles. I. Analysis of particle size and shape. J. Biomed. Mater. Res. 55, 320–329 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alfons Fischer
    • 1
    • 3
  • Wlodzimierz Dudzinski
    • 2
  • Birgit Gleising
    • 3
  • Priska Stemmer
    • 1
    • 3
  1. 1.Materials Science and EngineeringUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Faculty of Technology and EngineeringWroclaw University of Science and TechnologyWroclawPoland
  3. 3.CeNIDE-ICAN, Interdisciplinary Center for Analytics on the NanoscaleUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations