Advertisement

Electron Microscopy and Microanalysis for Wear Surface Characterization

Focused Ion-Beam, Electron Backscattered Diffraction and Transmission Electron Microscopy
  • Joseph R. Michael
  • Paul G. Kotula
  • Somuri V. Prasad
Chapter
Part of the Microtechnology and MEMS book series (MEMS)

Abstract

Wear surface analysis , specifically in the subsurface regions, is essential for understanding the fundamental mechanisms of friction and material removal during wear. The advent of focused ion-beam systems (combined scanning electron and focused ion-beam microscopes) has made it possible to prepare site-specific cross sections of wear surfaces for scanning electron microscopy, electron backscattered diffraction, transmission electron microscopy, and X-ray microanalysis. During the past decade, these state-of-the-art electron microscopy techniques are being increasingly used to characterize wear-induced changes to microstructures and crystallographic textures.

Notes

Acknowledgements

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. The authors gratefully acknowledge Professor Thomas W. Scharf, University of North Texas, for many years of collaboration with the authors on this subject, and Dr. Corbett Battaile for critically reviewing the manuscript. Special thanks to Michael Rye for the FIB work and to Bonnie McKenzie for the SEM, EBSD and TKD studies.

References

  1. 1.
    D.A. Rigney, J.P. Hirth, Plastic-deformation and sliding friction of metals. Wear 53, 345–370 (1979)CrossRefGoogle Scholar
  2. 2.
    S.V. Prasad, Wear, in Concise Encyclopedia of Advanced Ceramic Materials, ed. by R.J. Brook (Pergamon Press, Oxford, 1991), pp. 511–519CrossRefGoogle Scholar
  3. 3.
    S.V. Prasad, T.W. Scharf, J. Mater. Sci. 48, 511–531 (2013)CrossRefGoogle Scholar
  4. 4.
    A.J.W. Moore, Proc. Roy. Soc. A 195, 231 (1948)CrossRefGoogle Scholar
  5. 5.
    F.P. Bowden, D. Tabor D, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1986), pp. 112, 120Google Scholar
  6. 6.
    R.F. Pease, W.C. Nixon, J. Sci. Instrum. 42, 81–85 (1965)CrossRefGoogle Scholar
  7. 7.
    D.B. Williams, C.B. Carter, Transmission electron microscopy: A Textbook for Materials Science, 2nd edn. (Springer, 2013) ISBN-13: 978–0387765006Google Scholar
  8. 8.
    P. Heilmann, D.A. Rigney, Metall. Trans. 12A, 686 (1981)CrossRefGoogle Scholar
  9. 9.
    W.M. Rainforth, Wear 245, 162 (2000)CrossRefGoogle Scholar
  10. 10.
    M. Nastasi, J. Mayer, J.K. Hirvonen, Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, New York, 1996)CrossRefGoogle Scholar
  11. 11.
    L. Giannuzzi, Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer, New York, 2006)Google Scholar
  12. 12.
    J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H. Scott, D.C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis (Springer, New York, 2017)Google Scholar
  13. 13.
    J. Mayer, L.A. Giannuzzi, T. Kamino, J. Michael, TEM sample preparation and FIB-induced damage. MRS Bull. 32(5), 400–407 (2007)CrossRefGoogle Scholar
  14. 14.
    P.W. Trimby, Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 16–24 (2012)CrossRefGoogle Scholar
  15. 15.
    R.R. Keller, R.H. Geiss, Transmission EBSD from 10 nm domains in a scanning electron microscope. J. Microsc. 245–251 (2012)CrossRefGoogle Scholar
  16. 16.
    L.A. Giannuzzi, Z. Yu, D. Yin, M.P. Harmer, Q. Xu, N.S. Smith, L. Chan, J. Hiller, D. Hess, T. Clark, Theory and new applications of ex situ lift out. Microsc. Microanal. 21(4), 1034–1048 (2015)CrossRefGoogle Scholar
  17. 17.
    N. Bassim, K. Scott, L.A. Giannuzzi, Recent advances in focused ion beam technology and applications. MRS Bull. 39(4), 317–325 (2014)CrossRefGoogle Scholar
  18. 18.
    V. Randle, Microtexture Determination and its Applications (Maney Publishing, London, 2003)Google Scholar
  19. 19.
    A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field (eds.), Electron Backscatter Diffraction in Materials Science (Springer, New York, 2009)Google Scholar
  20. 20.
    C.B. Carter, D.B. Williams (eds.), Transmission Electron Microscopy (Springer International Publishing Switzerland, 2016), Chapter 16,  https://doi.org/10.1007/978-3-319-26651-0_16 CrossRefGoogle Scholar
  21. 21.
    M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius, K. Urban, Electron microscopy image enhanced. Nature 392, 768–769 (1998).  https://doi.org/10.1038/33823 CrossRefGoogle Scholar
  22. 22.
    P.E. Batson, N. Dellby, O.L. Krivanek, Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002).  https://doi.org/10.1038/nature00972 CrossRefGoogle Scholar
  23. 23.
    H.S. von Harrach, P. Dona, B. Freitag, H. Soltau, A. Niculae, M. Rohde, J. Phys.: Conf. Ser. 241, 012015 (2010)Google Scholar
  24. 24.
    R.B. Mott, C.G. Waldman, R. Batcheler, J.J. Friel, Position tagged spectrometry: A new approach for EDS spectrum imaging. in Proceeding of Microscopy Microanalysis, ed. by G.W. Bailey, M.H. Ellisman, R.A. Hennigar, N.J. Zaluzec. Jones and Begell Publishing, New York, pp. 592–593Google Scholar
  25. 25.
    E. Gatti, P. Rehak, Nuc. Inst. Meth. Phys. Res. 225, 608–614 (1984)CrossRefGoogle Scholar
  26. 26.
    L. Strüder, N. Meidinger, D. Stotter, J. Kemmer, P. Lechner, P. Leutenegger, H. Soltau, F. Eggert, M. Rohde, T. Schulein, High-resolution X-ray spectroscopy at close to room temperature. Microsc. Microanal. 4, 622–631 (1998)CrossRefGoogle Scholar
  27. 27.
    A. Niculae, P. Lechner, H. Soltau, G. Lutz, L. Strüder, C. Fiorini, A. Longoni, Optimized readout methods of silicon drift detectors for high-resolution X-ray spectroscopy. Nucl. Instrum. Methods. Phys. Res. A 568, 336–342 (2006)CrossRefGoogle Scholar
  28. 28.
    R. Fitzgerald, K. Keil, K.F.J. Heinrich, Science 159, 528–530 (1968)CrossRefGoogle Scholar
  29. 29.
    B.L. Doyle, D.S. Walsh, P.G. Kotula, P. Rossi, T. Schulein, M. Rohde, X-Ray Spectrom. 34, 279–284 (2005)CrossRefGoogle Scholar
  30. 30.
    P.G. Kotula, J.R. Michael, M. Rohde, Microsc. Microanal. Suppl. 2(14), 116–117 (2008)CrossRefGoogle Scholar
  31. 31.
    P.G. Kotula, M.R. Keenan, Application of multivariate statistical analysis to STEM X-ray spectral images: interfacial analysis in microelectronics. Microsc. Microanal. 12(6), 538–544 (2006)CrossRefGoogle Scholar
  32. 32.
    M.R. Keenan, P.G. Kotula, Accounting noise in the multivariate statistical analysis of TOF-SIMS data. Surf. Interf. Anal. 36, 203–212 (2004)CrossRefGoogle Scholar
  33. 33.
    M.R. Keenan, P.G. Kotula, Optimal scaling of ToF-SIMS spectrum-images prior to multivariate statistical analysis. Appl. Surf. Sci. 231–232, 240–244 (2004)CrossRefGoogle Scholar
  34. 34.
    M.R. Keenan, P.G. Kotula, Apparatus and System for Multivariate Spectral Analysis. US Patent # 6,584,413, 2003Google Scholar
  35. 35.
    M.R. Keenan, P.G. Kotula, Method of Multivariate Spectral Analysis. US Patent # 6,675,106, 2004Google Scholar
  36. 36.
    M.R. Keenan, Multivariate analysis of spectral images composed of count data. in Techniques and Applications of Hyperspectral Image Analysis, ed. by H. Grahn, P. Geladi (Wiley & Sons, Chinchester, 2007)Google Scholar
  37. 37.
    I.T. Jollife, Principal Component Analysis, 2nd edn. (Springer, New York, 2002)Google Scholar
  38. 38.
    H.F. Kaiser, The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3), 187–200 (1958)CrossRefGoogle Scholar
  39. 39.
    M.R. Keenan, Exploiting spatial-domain simplicity in spectral image analysis. Surf. Int. Anal. 41, 79–87 (2009)CrossRefGoogle Scholar
  40. 40.
    S.V. Prasad, J.R. Michael, T.R. Christenson, EBSD studies on wear-induced subsurface regions in LIGA nickel. Scripta Mater. 48, 255–260 (2003)CrossRefGoogle Scholar
  41. 41.
    S.V. Prasad, T.W. Scharf, P.G. Kotula, J.R. Michael, T.R. Christenson, J Microelectromech. Syst. 18, 695 (2009)CrossRefGoogle Scholar
  42. 42.
    S.V. Prasad, C.C. Battaile, P.G. Kotula, Scripta Mater. 64, 729–732 (2011)CrossRefGoogle Scholar
  43. 43.
    T.W. Scharf, P.G. Kotula, S.V. Prasad, Acta Materiala 58, 4100–4109 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Joseph R. Michael
    • 1
  • Paul G. Kotula
    • 1
  • Somuri V. Prasad
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations