Problem-Solving and Mathematical Research Projects: Creative Processes, Actions, and Mediations

  • Inés M. Gómez-ChacónEmail author
  • Constantino de la Fuente
Part of the Research in Mathematics Education book series (RME)


Based on the idea that the creative process is one that involves skills that can be learned and developed with practice, this chapter presents the design and development of a Mathematical Research Project (MRP) for teaching. It examines the output and development of the modalities of mediations during processes of instrumental genesis working from problem-solving tasks (PST) to arrive at Mathematical Research Projects (MRPs). We will respond to the question: What teacher mediations articulate student creativity in Mathematical Research Projects? It will specify (1) identification of the student’s activity by the teacher – the operational mathematical invariants of the students’ schemes, the cognitive processes the student puts into action, and the domains of mathematical knowledge – and (2) mediated activity between the teacher and students regarding the instrument, the object, and the subject.


Inquiry-based learning Mathematical creativity Mathematics Instrumental and documentary genesis Teacher Teaching 



This study was funded by the Spanish Ministry of the Economy and Competitive Affairs under project EDU2013-44047-P entitled “Characterization of specialized knowledge in Mathematics Teachers” and by special action grant from Cátedra UCM Miguel de Guzmán (Spain) under project “Mathematical Working Space” (UCM-CmdeGuzman-2015-01).


  1. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7(3), 245–274.CrossRefGoogle Scholar
  2. Artigue, M. & Baptist, P. (2012). Inquiry in Mathematics Educations. The Fibonacci Project. France.
  3. Artigue, M., & Blomboj, M. (2013). Conceptualizing inquiry-based in mathematics educations. ZDM-The International Journal on Mathematics Education, 45, 797–810.CrossRefGoogle Scholar
  4. Beguin, P., & Rabardel, P. (2000). Designing for instrument-mediated activity. Scandinavian Journal of Information Systems, 12, 173–190.Google Scholar
  5. Blombreg, J., Suchman, L., & Trigg, R. H. (1996). Reflection on a work oriented design project. Human–Computer Interaction, 11(3), 237–266.CrossRefGoogle Scholar
  6. Braverman, A. (2010). Systematic implementation of inquiry projects in secondary school mathematics for the development of students’ creativity. Doctoral Dissertation. University of Ben-Gurion in Negev.Google Scholar
  7. Braverman A., & Samovol, P. (2008). Creativity: Transforming problem solving to the research. In M. E. Saul & M. Applebaum (Coords.), Proceedings of the 5th international conference on creativity in mathematics and the education of gifted students. (pp. 398–399). Haifa.Google Scholar
  8. Csikszentmihalyi, M. (1996). Creativity: Flow and the psychology of discovery and invention. New York: Harper Collins.Google Scholar
  9. De la Fuente, C. (2013). De la resolución de problemas a las investigaciones matemáticas. Algunas estrategias didácticas. Uno - Revista de Didáctica de las Matemáticas, 64, 91–100.Google Scholar
  10. De la Fuente, C. (2016). Invariantes operacionales matemáticos en los proyectos de investigación matemática con estudiantes de secundaria. Doctoral dissertation. Complutense University of Madrid, Madrid.Google Scholar
  11. De la Fuente, C., Gómez-Chacón, I. M., & Arcavi, A. (2015). Tareas de investigación matemática con estudiantes de Secundaria. In I. Gómez-Chacón et al. (Eds.), Mathematical Working Space, Proceedings Fourth ETM Symposium (pp. 555–574). Madrid: Publicaciones del Instituto de Matemática Interdisciplinar, Universidad Complutense de Madrid.Google Scholar
  12. Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced mathematical thinking (pp. 42–53). Dordrecht, The Netherlands: Kluwer.Google Scholar
  13. Getzels, J. W. (1987). Creativity, Intelligence, and Problem Finding: Retrospect and Prospect, In Scott G. Isaksen (Ed.) Frontiers of Creativity Research: Beyond the Basics, (pp. 88–102). Buffalo, NY: Bearly.Google Scholar
  14. Gueudet, G., & Trouche, L. (2008). Du travail documentaire des enseignants : genèses, collectifs, communautés. Éducation et didactique, 2, 3 Accessed 15 Jan 2015CrossRefGoogle Scholar
  15. Gueudet, G., & Trouche, L. (2010). Ressources en ligne et travail collectif enseignant : accompagner les évolutions de pratique. In L. Mottier Lopez, C. Martinet, & V. Lussi (Eds.), Congrès Actualité de la Recherche en Education (pp. 1–10). Genève, Suisse: Université de Genève.Google Scholar
  16. Gueudet, G., & Trouche, L. (2011). Renouvellement des ressources et de l’activité des professeurs, renouvellement du regard sur une profession. In Colloque le travail enseignant au XXie siècle. Lyon, France: INRP,Google Scholar
  17. Guin, D., & Trouche, L. (2007). Une approche multidimentionnelle pour la conception collaborative de ressources pédagogiques? In M. Baron, D. Guin, & L. Trouche (Eds.), Ressources numériques et environnements d’apprentissages informatisés: conception et usages, regards croisés (pp. 197–228). Paris: Ed. Hermés.Google Scholar
  18. Guzmán, M. (1991). Para pensar mejor. Barcelona: Edit. Labor.Google Scholar
  19. Kruteskii, V. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: University of Chicago Press.Google Scholar
  20. Mason, J. (2010). Attention and Intention in Learning About Teaching Through Teaching. In R. Leikin & R. Zazkis (Eds.), Learning through teaching mathematics: Development of teachers’ knowledge and expertise in practice (pp. 23–47). New York: Springer.CrossRefGoogle Scholar
  21. Mason, J., Burton, L., & Stacey, K. (1985). Thinking mathematically. Wokingham, UK: Addison-Wesley.Google Scholar
  22. Mishra, P., & Henriksen, D. (2014). Revisited and remixed: Creative variations and twisting knobs. TechTrends, 58(1), 20–23.CrossRefGoogle Scholar
  23. Palatnik, A., & Koichu, B. (2015). Exploring insight: Focus on shifts of attention. For The Learning of Mathematics, 35(2), 9–14.Google Scholar
  24. Pastré, P. & Rabardel, P. (Eds). (2005). Modèles du sujet pour la conception – Dialectiques activités développement, Toulouse:Octarès.Google Scholar
  25. Polya, G. (1957). How to solve it? New York: Doubleday Anchor Books Edition.Google Scholar
  26. Rabardel, P. (1995). Les hommes et les technologies, une approche cognitive des instruments contemporains. Paris: Armand Colin.Google Scholar
  27. Rabardel, P. (2001). Instrument mediated activity in situations). In A. Blandford, J. Vanderdonckt, & P. Gray (Eds.), People and computers XV—Interaction without Frontiers (pp. 17–30). New York: Springer-Verlag.CrossRefGoogle Scholar
  28. Rabardel, P. (2005). Instrument subjectif et développement du pouvoir d’agir. In P. Rabardel & P. Pastré (dir.), Modèles du sujet pour la conception. Dialectiques activités développement (pp. 11–29). Toulouse: Octarès.Google Scholar
  29. Rabardel, P., & Béguin, P. (2005). Instrument mediated activity: From subject development to anthropocentric design. Theoretical Issues in Ergonomics Sciences., 6(5), 429–461.CrossRefGoogle Scholar
  30. Rabardel, P., & Bourmaud, G. (2003). From computer to instrument system: A developmental perspective. Interacting with Computers, 15, 665–691.CrossRefGoogle Scholar
  31. Samurçay, R., & Rabardel, P. (2004). Modèles pour l’analyse de l’activité et des compétences: propositions. In R. Samurçay & P. Pastré (Orgs.), Recherches en didactique professionnelle, (pp. 163–180). Toulouse, France : Octarès.Google Scholar
  32. Schoenfeld, A., & Kilpatrick, J. (2013). A U.S. perspective on the implementation of inquiry-based learning in mathematics. ZDM – The International Journal on Mathematics Education, 45(6), 901–909.CrossRefGoogle Scholar
  33. Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.Google Scholar
  34. Schoenfeld, A. H. (1992a). Learning to think mathematically: Problem solving, meta-cognition, and sense-making in mathematics. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334–370). New York: Macmillan.Google Scholar
  35. Schoenfeld, A. H. (1992b). Reflections on doing and teaching mathematics. In A. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 53–70). Hillsdale, NJ: Erlbaum.Google Scholar
  36. Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM-The International Journal on Mathematics Education, 41(1&2), 13–27.CrossRefGoogle Scholar
  37. Sriraman, B., Haavold, P., & Lee, K. (2013). Mathematical creativity and giftedness: A commentary on and review of theory, new operational views, and ways forward. ZDM-The International Journal on Mathematics Education, 45(2), 215–225.CrossRefGoogle Scholar
  38. Vergnaud, G. (1996). Au fond de l'apprentissage, la conceptualisation. In R. Noirfalise & M.-J. Perrin (Eds.), Ecole d'été de didactique des mathématiques (pp. 174–185). Université Clermont-Ferrand II, France.Google Scholar
  39. Wertsch, J. V. (1998). Mind as action. New York: Oxford University Press.Google Scholar
  40. Winograd, T., & Flores, C. F. (1986). Understanding computers and cognition: A new foundation for design. Norwood, NJ: Ablex.Google Scholar
  41. Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89–81.CrossRefGoogle Scholar
  42. Yeo, J. B. W., & Yeap, B. H. (2009). Investigating the processes of mathematical investigation. Paper presented at the 3rd Redesigning Pedagogy International Conference, Singapoor.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Inés M. Gómez-Chacón
    • 1
    Email author
  • Constantino de la Fuente
    • 2
  1. 1.Instituto de Matemática Interdisciplinar, Facultad de Ciencias Matemáticas, Universidad Complutense de MadridMadridSpain
  2. 2.Universidad Complutense de MadridMadridSpain

Personalised recommendations