Advertisement

Symbolic Specification and Verification of Data-Aware BPMN Processes Using Rewriting Modulo SMT

  • Francisco Durán
  • Camilo Rocha
  • Gwen Salaün
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11152)

Abstract

The Business Process Model and Notation (\(\text {BPMN}\)) is the standard notation for modeling business processes. It relies on a workflow-based language that allows for the modeling of the control-flow graph of an entire process. In this paper, the main focus is on an extension of \(\text {BPMN}\) with data, which is convenient for describing real-world processes involving complex behavior and data descriptions. By considering this level of expressiveness due to the new features, challenging questions arise regarding the choice of the semantic framework for specifying such an extension of \(\text {BPMN}\), as well as how to carry out the symbolic simulation, validation, and correctness of the process models. These issues are addressed first by providing a symbolic executable rewriting logic semantics of \(\text {BPMN}\) using the rewriting modulo SMT framework, where the execution is driven by rewriting modulo axioms and by querying SMT decision procedures for data conditions. Second, reachability properties, such as deadlock freedom and detection of unreachable states with data exhibiting certain values, can be specified and automatically checked with the help of Maude, thanks to its support for rewriting modulo SMT. The approach presented in this paper has been validated on realistic processes and it is illustrated with a running example.

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their valuable comments on an earlier draft of this paper. F. Durán has been partially supported by Spanish MINECO/FEDER project TIN2014-52034-R and Univ. Málaga, Campus de Excelencia Internacional Andalucía Tech. The work of C. Rocha was partially supported by CAPES, Colciencias, and INRIA via the STIC AmSud project “EPIC: EPistemic Interactive Concurrency” (Proc. No 88881.117603/2016-01), and by Capital Semilla 2017, project “SCORES: Stochastic Concurrency in Rewrite-based Probabilistic Models” (Proj. No. 020100610).

References

  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  2. 2.
    Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theor. Comput. Sci. 360(1–3), 386–414 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Calvanese, D., Dumas, M., Laurson, Ü., Maggi, F.M., Montali, M., Teinemaa, I.: Semantics and analysis of DMN decision tables. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 217–233. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_13CrossRefGoogle Scholar
  4. 4.
    Lincoln, P., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71999-1CrossRefGoogle Scholar
  5. 5.
    Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F., Vandin, A.: BProVe: a formal verification framework for business process models. In: Proceedings of ASE, pp. 217–228. IEEE Computer Society (2017)Google Scholar
  6. 6.
    Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Inf. Syst. 36(2), 292–312 (2011)CrossRefGoogle Scholar
  7. 7.
    Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)CrossRefGoogle Scholar
  8. 8.
    Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)CrossRefGoogle Scholar
  9. 9.
    Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational termination of membership equational programs. High. Order Symb. Comput. 21(1–2), 59–88 (2008)CrossRefGoogle Scholar
  10. 10.
    Durán, F., Salaün, G.: Verifying timed BPMN processes using Maude. In: Jacquet, J.-M., Massink, M. (eds.) COORDINATION 2017. LNCS, vol. 10319, pp. 219–236. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59746-1_12CrossRefGoogle Scholar
  11. 11.
    El-Saber, N., Boronat, A.: BPMN formalization and verification using Maude. In: Proceedings of BM-FA, pp. 1–8. ACM (2014)Google Scholar
  12. 12.
    Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105(2), 217–273 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Güdemann, M., Poizat, P., Salaün, G., Ye, L.: VerChor: a framework for the design and verification of choreographies. IEEE Trans. Serv. Comput. 9(4), 647–660 (2016)CrossRefGoogle Scholar
  14. 14.
    Herbert, L., Sharp, R.: Using stochastic model checking to provision complex business services. In: Proceedings of HASE, pp. 98–105. IEEE (2012)Google Scholar
  15. 15.
    ISO/IEC: International Standard 19510, Information Technology - Business Process Model and Notation (2013)Google Scholar
  16. 16.
    Kheldoun, A., Barkaoui, K., Ioualalen, M.: Specification and verification of complex business processes - a high-level petri net-based approach. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 55–71. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23063-4_4CrossRefGoogle Scholar
  17. 17.
    Kossak, F.: A Rigorous Semantics for BPMN 2.0 Process Diagrams. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09931-6CrossRefGoogle Scholar
  18. 18.
    Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31984-9_3CrossRefGoogle Scholar
  19. 19.
    Mateescu, R., Salaün, G., Ye, L.: Quantifying the parallelism in BPMN processes using model checking. In: Proceedings of CBSE, pp. 159–168. ACM (2014)Google Scholar
  20. 20.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Compu. Sci. 96(1), 73–155 (1992)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-64299-4_26CrossRefGoogle Scholar
  22. 22.
    Nguyen, H.N., Poizat, P., Zaïdi, F.: A symbolic framework for the conformance checking of value-passing choreographies. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 525–532. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34321-6_36CrossRefGoogle Scholar
  23. 23.
    Object Management Group: Business Process Model and Notation (BPMN) - V. 2.0, January 2011Google Scholar
  24. 24.
    Object Management Group: Decision Model and Notation Specification (DMN) - V. 1.1, May 2016Google Scholar
  25. 25.
    Poizat, P., Salaün, G.: Checking the realizability of BPMN 2.0 choreographies. In: Proceedings of SAC, pp. 1927–1934. ACM (2012)Google Scholar
  26. 26.
    Prandi, D., Quaglia, P., Zannone, N.: Formal analysis of BPMN via a translation into COWS. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 249–263. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68265-3_16CrossRefGoogle Scholar
  27. 27.
    Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. J. Appl. Logic 10(1), 2–31 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Raedts, I., Petkovic, M., Usenko, Y.S., van der Werf, J.M., Groote, J.F., Somers, L.: Transformation of BPMN models for behaviour analysis. In: Proceedings of MSVVEIS, pp. 126–137 (2007)Google Scholar
  29. 29.
    Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system analysis. J. Log. Algebr. Methods Program. 86(1), 269–297 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Viry, P.: Equational rules for rewriting logic. Theor. Comput. Sci. 285(2), 487–517 (2002)MathSciNetCrossRefGoogle Scholar
  31. 31.
    White, D.J.: Markov Decision Processes. Wiley, Chichester (1993)zbMATHGoogle Scholar
  32. 32.
    Wong, P.Y.H., Gibbons, J.: A process semantics for BPMN. In: Liu, S., Maibaum, T., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 355–374. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88194-0_22CrossRefGoogle Scholar
  33. 33.
    Wong, P., Gibbons, J.: Verifying business process compatibility. In: Proceedings of QSIC, pp. 126–131. IEEE (2008)Google Scholar
  34. 34.
    Wynn, M.T., Verbeek, H.M.W., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Business process verification - finally a reality! Bus. Process Manag. J. 15(1), 74–92 (2009)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universidad de MálagaMálagaSpain
  2. 2.Pontificia Universidad JaverianaCaliColombia
  3. 3.Univ. Grenoble Alpes, CNRS, Grenoble INP, Inria, LIGGrenobleFrance

Personalised recommendations