Advertisement

Real-Time Rewriting Logic Semantics for Spatial Concurrent Constraint Programming

  • Sergio Ramírez
  • Miguel Romero
  • Camilo Rocha
  • Frank Valencia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11152)

Abstract

Process calculi provide a language in which the structure of terms represents the structure of processes together with an operational semantics to represent computational steps. This paper uses rewriting logic for specifying and analyzing a process calculus for concurrent constraint programming (\(\textsf {ccp}\)), combining spatial and real-time behavior. In these systems, agents can run processes in different computational spaces (e.g., containers) while subject to real-time requirements (e.g., upper bounds in the execution time of a given operation), which can be specified with both discrete and dense linear time. The real-time rewriting logic semantics is fully executable in Maude with the help of rewriting modulo SMT: partial information (i.e., constraints) in the specification is represented by quantifier-free formulas on the shared variables of the system that are under the control of SMT decision procedures. The approach is used to symbolically analyze existential real-time reachability properties of process calculi in the presence of spatial hierarchies for sharing information and knowledge.

Notes

Acknowledgments

The authors would like to thank the anonymous referees for their helpful comments. The first author was partially supported by Colciencias via the project CLASSIC (Proj. No. 125171250031). The second author was partially supported by Colciencias’ Convocatoria 761 Jóvenes Investigadores e Innovadores 2016 and Pontificia Universidad Javeriana Cali (Contract No. 416-2017). The third author was partially supported by Capital Semilla 2017, project “SCORES: Stochastic Concurrency in Rewrite-based Probabilistic Models” (Proj. No. 020100610). The third and fourth authors were partially supported by CAPES, Colciencias, and INRIA via the STIC AmSud project “EPIC: EPistemic Interactive Concurrency” (Proj. No. 88881.117603/2016-01).

References

  1. 1.
    Aranda, J., Pérez, J.A., Rueda, C., Valencia, F.D.: Stochastic behavior and explicit discrete time in concurrent constraint programming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 682–686. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89982-2_57CrossRefzbMATHGoogle Scholar
  2. 2.
    Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_14CrossRefGoogle Scholar
  3. 3.
    Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theor. Comput. Sci. 360(1–3), 386–414 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chiarugi, D., Falaschi, M., Hermith, D., Marangoni, R., Olarte, C.: Stochastic modelling of non markovian dynamics in biochemical reactions. In: Rojas, I., Guzman, F.M.O. (eds.) International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2013, Granada, Spain, 18–20 March 2013. Proceedings, pp. 537–544. Copicentro Editorial (2013)Google Scholar
  5. 5.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71999-1CrossRefzbMATHGoogle Scholar
  6. 6.
    de Boer, F., Gabbrielli, M., Meo, M.C.: A timed concurrent constraint language. Inf. Comput. 161, 45–83 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Degano, P., Gadducci, F., Priami, C.: A causal semantics for CCS via rewriting logic. Theor. Comput. Sci. 275(1–2), 259–282 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 737–744. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08867-9_49CrossRefGoogle Scholar
  9. 9.
    Gilbert, D., Palamidessi, C.: Concurrent constraint programming with process mobility. In: Lloyd, J., et al. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 463–477. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44957-4_31CrossRefGoogle Scholar
  10. 10.
    Gupta, V., Jagadeesan, R., Panangaden, P.: Stochastic processes as concurrent constraint programs. In: Symposium on Principles of Programming Languages, pp. 189–202 (1999)Google Scholar
  11. 11.
    Gupta, V., Jagadeesan, R., Saraswat, V.A.: Computing with continuous change. Sci. Comput. Program. 30(1–2), 3–49 (1998)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Guzmán, M., Haar, S., Perchy, S., Rueda, C., Valencia, F.D.: Belief, knowledge, lies and other utterances in an algebra for space and extrusion. J. Log. Algebr. Methods Program. 86(1), 107–133 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Knight, S., Palamidessi, C., Panangaden, P., Valencia, F.D.: Spatial and epistemic modalities in constraint-based process calculi. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp. 317–332. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32940-1_23CrossRefGoogle Scholar
  14. 14.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Meseguer, J., Roşu, G.: The rewriting logic semantics project: a progress report. Inf. Comput. 231, 38–69 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nielsen, M., Palamidessi, C., Valencia, F.D.: Temporal concurrent constraint programming: denotation, logic and applications. Nordic J. Comput. 9(1), 145–188 (2002)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Okasaki, C.: Purely Functional Data Structures. Cambridge University Press, Cambridge (1. paperback ed., transf. to digital printing edition) (2003). OCLC: 552279078Google Scholar
  18. 18.
    Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in rewriting logic. Theor. Comput. Sci. 285(2), 359–405 (2002)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ölveczky, P.C., Meseguer, J.: Abstraction and completeness for Real-Time Maude. Electron. Notes Theor. Comput. Sci. 176(4), 5–27 (2007)CrossRefGoogle Scholar
  20. 20.
    Pérez, J.A., Rueda, C.: Non-determinism and probabilities in timed concurrent constraint programming. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 677–681. Springer, Berlin, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89982-2_56CrossRefzbMATHGoogle Scholar
  21. 21.
    Rocha, C., Meseguer, J., Muñoz, C.: Rewriting modulo SMT and open system analysis. J. Log. Algebr Methods Program. 86(1), 269–297 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Romero, M., Rocha, C.: Symbolic execution and reachability analysis using rewriting modulo SMT for spatial concurrent constraint systems with extrusion. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 435–451. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77935-5_29CrossRefGoogle Scholar
  23. 23.
    Saraswat, V., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent constraint programming. In: Proceedings of the Ninth Annual IEEE Symposium on Logic in Computer Science, pp. 71–80, 4–7 July 1994Google Scholar
  24. 24.
    Saraswat, V., Jagadeesan, R., Gupta, V.: Foundations of timed concurrent constraint programming, pp. 71–80. In: IEEE Computer Society Press (1994)Google Scholar
  25. 25.
    Saraswat, V., Jagadeesan, R., Gupta, V.: Default timed concurrent constraint programming. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 272–285, Jan 1995Google Scholar
  26. 26.
    Saraswat, V.A., Rinard, M., Panangaden, P.: Semantic foundations of concurrent constraint programming. In: POPL 1991, pp. 333–352. ACM (1991)Google Scholar
  27. 27.
    Sarria, G., Rueda, C.: Real-time concurrent constraint programming. In: 34th Latin American Conference on Informatics (CLEI 2008), pp. 379–391. CLEI (2008)Google Scholar
  28. 28.
    Verdejo, A., Martí-Oliet, N.: Two case studies of semantics execution in Maude: CCS and LOTOS. Form. Methods Syst. Design 27(1–2), 113–172 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Electronics and Computer SciencePontificia Universidad JaverianaCaliColombia
  2. 2.CNRS, LIX École Polytechnique de ParisParisFrance

Personalised recommendations