Advertisement

Proving Ground Confluence of Equational Specifications Modulo Axioms

  • Francisco Durán
  • José Meseguer
  • Camilo RochaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11152)

Abstract

Terminating functional programs should be deterministic, i.e., should evaluate to a unique result, regardless of the evaluation order. For equational functional programs such determinism is exactly captured by the ground confluence property. For terminating equations this is equivalent to ground local confluence, which follows from local confluence. Checking local confluence by computing critical pairs is the standard way to check ground confluence. The problem is that some perfectly reasonable equational programs are not locally confluent and it can be very hard or even impossible to make them so by adding more equations. We propose a three-step strategy to prove that an equational program as is is ground confluent: First: apply the strategy proposed in [9] to use non-joinable critical pairs as completion hints to either achieve local confluence or reduce the number of critical pairs. Second: use the inductive inference system proposed in this paper to prove the remaining critical pairs ground joinable. Third: to show ground confluence of the original specification, prove also ground joinable the equations added. These methods apply to order-sorted and possibly conditional equational programs modulo axioms such as, e.g., Maude functional modules.

Notes

Acknowledgments

The authors would like to thank the anonymous referees for their helpful comments that helped us improve the paper. The first author was partially supported by Spanish MINECO/FEDER project TIN2014-52034-R and Univ. Málaga, Campus de Excelencia Internacional Andalucía Tech. The second author was partially supported by NRL under contract number N00173-17-1-G002. The third author was partially supported by CAPES, Colciencias, and INRIA via the STIC AmSud project “EPIC: EPistemic Interactive Concurrency” (Proc. No 88881.117603/2016-01).

References

  1. 1.
    Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting systems automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02348-4_7CrossRefzbMATHGoogle Scholar
  2. 2.
    Bouhoula, A.: Simultaneous checking of completeness and ground confluence for algebraic specifications. ACM Trans. Comput. Log. 10(3), 1–33 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theor. Comput. Sci. 360(1–3), 386–414 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71999-1CrossRefzbMATHGoogle Scholar
  5. 5.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)Google Scholar
  6. 6.
    Durán, F., Lucas, S., Marché, C., Meseguer, J., Urbain, X.: Proving operational termination of membership equational programs. High.-Order Symb. Comput. 21(1–2), 59–88 (2008)CrossRefGoogle Scholar
  7. 7.
    Durán, F., Lucas, S., Meseguer, J.: MTT: the Maude termination tool (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 313–319. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-71070-7_27CrossRefGoogle Scholar
  8. 8.
    Durán, F., Lucas, S., Meseguer, J.: Termination modulo combinations of equational theories. In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol. 5749, pp. 246–262. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04222-5_15CrossRefzbMATHGoogle Scholar
  9. 9.
    Durán, F., Meseguer, J.: On the Church-Rosser and coherence properties of conditional order-sorted rewrite theories. J. Log. Algebr. Program. 81(7–8), 816–850 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Durán, F., Meseguer, J., Rocha, C.: Proving ground confluence of equational specifications modulo axioms. Technical report 2142/99548, University of Illinois, Urbana, USA, March 2018Google Scholar
  11. 11.
    Durán, F., Rocha, C., Álvarez, J.M.: Towards a Maude formal environment. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 329–351. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24933-4_17CrossRefGoogle Scholar
  12. 12.
    Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105(2), 217–273 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hrbacek, K., Jech, T.J.: Introduction to Set Theory. Monographs and Textbooks in Pure and Applied Mathematics, vol. 45, 3rd edn. M. Dekker, New York (1999)zbMATHGoogle Scholar
  14. 14.
    Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998).  https://doi.org/10.1007/3-540-64299-4_26CrossRefGoogle Scholar
  15. 15.
    Meseguer, J.: Strict coherence of conditional rewriting modulo axioms. Theor. Comput. Sci. 672, 1–35 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: new evidence – a progress report. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 385–397. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63046-5_24CrossRefGoogle Scholar
  17. 17.
    Nakamura, M., Ogata, K., Futatsugi, K.: Incremental proofs of termination, confluence and sufficient completeness of OBJ specifications. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 92–109. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54624-2_5CrossRefGoogle Scholar
  18. 18.
    Rocha, C., Meseguer, J.: Constructors, sufficient completeness, and deadlock freedom of rewrite theories. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 594–609. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16242-8_42CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Francisco Durán
    • 1
  • José Meseguer
    • 2
  • Camilo Rocha
    • 3
    Email author
  1. 1.Universidad de MálagaMálagaSpain
  2. 2.University of Illinois, Urbana-ChampaignChampaignUSA
  3. 3.Pontificia Universidad JaverianaCaliColombia

Personalised recommendations