Advertisement

Cellular Automata Pseudo-Random Number Generators and Their Resistance to Asynchrony

  • Luca ManzoniEmail author
  • Luca Mariot
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11115)

Abstract

Cellular Automata (CA) have a long history being employed as pseudo-random number generators (PRNG), especially for cryptographic applications such as keystream generation in stream ciphers. Initially starting from the study of rule 30 of elementary CA, multiple rules where the objects of investigation and were shown to be able to pass most of the rigorous statistical tests used to assess the quality of PRNG. In all cases, the CA employed where of the classical, synchronous kind. This assumes a global clock regulating all CA updates which can be a weakness if an attacker is able to tamper it. Here we study how much asynchrony is necessary to make a CA-based PRNG ineffective. We have found that elementary CA are subdivided into three class: (1) there is a “state transition” where, after a certain level of asynchrony, the CA loses the ability to generate strong random sequences, (2) the randomness of the sequences increases with a limited level of asynchrony, or (3) CA normally unable to be used as PRNG exhibit a much stronger ability to generate random sequences when asynchrony is introduced.

References

  1. 1.
    Balzter, H., Braun, P.W., Köhler, W.: Cellular automata models for vegetation dynamics. Ecol. Model. 107(2), 113–125 (1998)CrossRefGoogle Scholar
  2. 2.
    Bandini, S., Rubagotti, F., Vizzari, G., Shimura, K.: A cellular automata based model for pedestrian and group dynamics: motivations and first experiments. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 125–139. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23178-0_11CrossRefGoogle Scholar
  3. 3.
    Bassham III, L.E., et al.: SP 800–22 Rev. 1a. A statistical test suite for random and pseudorandom number generators for cryptographic applications (2010)Google Scholar
  4. 4.
    Cappuccio, R., Cattaneo, G., Erbacci, G., Jocher, U.: A parallel implementation of a cellular automata based model for coffee percolation. Parallel Comput. 27(5), 685–717 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chopard, B.: Cellular automata modeling of physical systems. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science, pp. 865–892. Springer, New York (2009).  https://doi.org/10.1007/978-1-4614-1800-9CrossRefGoogle Scholar
  6. 6.
    Daemen, J., Govaerts, R., Vandewalle, J.: A framework for the design of one-way hash functions including cryptanalysis of Damgård’s one-way function based on a cellular automaton. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 82–96. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-57332-1_7CrossRefGoogle Scholar
  7. 7.
    Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_39CrossRefGoogle Scholar
  8. 8.
    Dennunzio, A., Formenti, E., Manzoni, L., Mauri, G.: \(m\)-Asynchronous cellular automata: from fairness to quasi-fairness. Nat. Comput. 12(4), 561–572 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Fatès, N., Morvan, M.: An experimental study of robustness to asynchronism for elementary cellular automata. Complex Syst. 16(1), 1–27 (2005)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fatès, N., Morvan, M., Schabanel, N., Thierry, E.: Fully asynchronous behaviour of double-quiescent elementary cellular automata. Theor. Comput. Sci. 362, 1–16 (2006)CrossRefGoogle Scholar
  11. 11.
    Fatès, N., Regnault, D., Schabanel, N., Thierry, É.: Asynchronous behavior of double-quiescent elementary cellular automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 455–466. Springer, Heidelberg (2006).  https://doi.org/10.1007/11682462_43CrossRefGoogle Scholar
  12. 12.
    Formenti, E., Imai, K., Martin, B., Yunès, J.-B.: Advances on random sequence generation by uniform cellular automata. In: Calude, C.S., Freivalds, R., Kazuo, I. (eds.) Computing with New Resources. LNCS, vol. 8808, pp. 56–70. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-13350-8_5CrossRefGoogle Scholar
  13. 13.
    Kanai, M., Nishinari, K., Tokihiro, T.: Stochastic cellular-automaton model for traffic flow. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 538–547. Springer, Heidelberg (2006).  https://doi.org/10.1007/11861201_62CrossRefGoogle Scholar
  14. 14.
    Klein, A.: Stream Ciphers. Springer, London (2013).  https://doi.org/10.1007/978-1-4471-5079-4CrossRefzbMATHGoogle Scholar
  15. 15.
    Leporati, A., Mariot, L.: 1-resiliency of bipermutive cellular automata rules. In: Kari, J., Kutrib, M., Malcher, A. (eds.) AUTOMATA 2013. LNCS, vol. 8155, pp. 110–123. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40867-0_8CrossRefzbMATHGoogle Scholar
  16. 16.
    Leporati, A., Mariot, L.: Cryptographic properties of bipermutive cellular automata rules. J. Cell. Automata 9(5–6), 437–475 (2014)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Manzoni, L., Umeo, H.: The firing squad synchronization problem on CA with multiple updating cycles. Theor. Comput. Sci. 559, 108–117 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Manzoni, L.: Asynchronous cellular automata and dynamical properties. Nat. Comput. 11(2), 269–276 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Manzoni, L., Porreca, A.E., Umeo, H.: The firing squad synchronization problem on higher-dimensional CA with multiple updating cycles. In: 4th International Workshop on Applications and Fundamentals of Cellular Automata - AFCA 2016, Hiroshima, Japan, November 2016Google Scholar
  20. 20.
    Mariot, L.: Asynchrony immune cellular automata. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 176–181. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44365-2_17CrossRefzbMATHGoogle Scholar
  21. 21.
    Martin, B.: A walsh exploration of elementary CA rules. J. Cell. Automata 3(2), 145–156 (2008)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Meier, W., Staffelbach, O.: Analysis of pseudo random sequences generated by cellular automata. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 186–199. Springer, Heidelberg (1991).  https://doi.org/10.1007/3-540-46416-6_17CrossRefGoogle Scholar
  23. 23.
    Shackleford, B., Tanaka, M., Carter, R.J., Snider, G.: FPGA implementation of neighborhood-of-four cellular automata random number generators. In: Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA 2002, Monterey, CA, USA, 24–26 February 2002, pp. 106–112 (2002)Google Scholar
  24. 24.
    Sipper, M., Tomassini, M.: Computation in artificially evolved, non-uniform cellular automata. Theor. Comput. Sci. 217(1), 81–98 (1999)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ulam, S.: Random processes and transformations. In: Proceedings of the International Congress on Mathematics, vol. 2, pp. 264–275 (1952)Google Scholar
  26. 26.
    Von Neumann, J.: Theory of self-reproducing automata. University of Illinois Press (1966). Edited by A.W. BurksGoogle Scholar
  27. 27.
    Wolfram, S.: Cryptography with cellular automata. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 429–432. Springer, Heidelberg (1986).  https://doi.org/10.1007/3-540-39799-X_32CrossRefGoogle Scholar
  28. 28.
    Worsch, T.: A note on (intrinsically?) universal asynchronous cellular automata. In: Proceedings of Automata 2010, Nancy, France, 14–16 June 2010, pp. 339–350 (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Informatica, Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanItaly

Personalised recommendations