Advertisement

Regional Synchronization of a Probabilistic Cellular Automaton

  • Franco Bagnoli
  • Raúl Rechtman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11115)

Abstract

We study the regional master-slave synchronization of a one dimensional probabilistic cellular automaton with two absorbing states. The master acts on the boundary of an interval, the region, of a fixed size. For some values of the parameters, this is enough to achieve synchronization in the region. For other values, we extend the regional synchronization to include a fraction of sites inside the region of interest. We present four different ways of doing this and show which is the most effective one, in terms of the fraction of sites inside the region and the time needed for synchronization.

Notes

Acknowledgments

We thank S. El Yacoubi for useful comments. R.S. acknowledges partial financial support from PPA-DGAPA-UNAM.

References

  1. 1.
    Bandini, S., Chopard, B., Tomassini, M. (eds.): ACRI 2002. LNCS, vol. 2493. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45830-1CrossRefzbMATHGoogle Scholar
  2. 2.
    Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.): ACRI 2004. LNCS, vol. 3305. Springer, Heidelberg (2004).  https://doi.org/10.1007/b102055CrossRefzbMATHGoogle Scholar
  3. 3.
    El Yacoubi, S., Chopard, B., Bandini, S. (eds.): ACRI 2006. LNCS, vol. 4173. Springer, Heidelberg (2006).  https://doi.org/10.1007/11861201CrossRefzbMATHGoogle Scholar
  4. 4.
    Umeo, H., Morishita, S., Nishinari, K., Komatsuzaki, T., Bandini, S. (eds.): ACRI 2008. LNCS, vol. 5191. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79992-4CrossRefzbMATHGoogle Scholar
  5. 5.
    Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.): ACRI 2010. LNCS, vol. 6350. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15979-4CrossRefzbMATHGoogle Scholar
  6. 6.
    Sirakoulis, G.C., Bandini, S. (eds.): ACRI 2012. LNCS, vol. 7495. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33350-7CrossRefzbMATHGoogle Scholar
  7. 7.
    Wąs, J., Sirakoulis, G.C., Bandini, S. (eds.): ACRI 2014. LNCS, vol. 8751. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11520-7CrossRefGoogle Scholar
  8. 8.
    El Yacoubi, S., Wąs, J., Bandini, S. (eds.): ACRI 2016. LNCS, vol. 9863. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44365-2CrossRefzbMATHGoogle Scholar
  9. 9.
    Bagnoli, F., Rechtman, R., El Yacoubi, S.: Control of cellular automata. Phys. Rev. E 86, 066201 (2012).  https://doi.org/10.1103/PhysRevE.86.066201CrossRefzbMATHGoogle Scholar
  10. 10.
    Bagnoli, F., El Yacoubi, S., Rechtman, R.: Toward a boundary regional control problem for Boolean cellular automata. Nat. Comput. (2017).  https://doi.org/10.1007/s11047-017-9626-1
  11. 11.
    Bagnoli, F., Dridi, S., El Yacoubi, S., Rechtman, R.: Regional control of probabilistic cellular automata. In: Mauri, G., et al. (eds.) ACRI 2018. LNCS, vol. 11115, pp. 243–254. Springer, Heidelberg (2018)Google Scholar
  12. 12.
    Bagnoli, F., Rechtman, R.: Phase transitions of cellular automata. In: Louis, P.-Y., Nardi, F.R. (eds.) Probabilistic Cellular Automata. ECC, vol. 27, pp. 215–236. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-65558-1_15CrossRefGoogle Scholar
  13. 13.
    Bagnoli, F., Rechtman, R.: Synchronization and maximum Lyapunov exponent in cellular automata. Phys. Rev. E 59, R1307 (1999).  https://doi.org/10.1103/PhysRevE.59.R1307CrossRefGoogle Scholar
  14. 14.
    Bagnoli, F., El Yacoubi, S., Rechtman, R.: Control of cellular automata. In: Robert, A.M. (ed.) Encyclopedia of Complexity and Systems Science. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-642-27737-5_710-1CrossRefzbMATHGoogle Scholar
  15. 15.
    Bagnoli, F., Boccara, N., Rechtman, R.: Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. Phys. Rev. E 63, 046116 (2001).  https://doi.org/10.1103/PhysRevE.63.046116CrossRefGoogle Scholar
  16. 16.
    Martins, M.L., Verona de Resende, H.F., Tsallis, C., Magalhães, A.C.N.: Evidence for a new phase in the Domany-Kinzel cellular automaton. Phys. Rev. Lett. 66, 20145 (1991).  https://doi.org/10.1103/PhysRevLett.66.2045CrossRefGoogle Scholar
  17. 17.
    Grassberger, P.: Are damage spreading transitions generically in the universality class of directed percolation? J. Stat. Phys. 79, 13 (1995).  https://doi.org/10.1007/BF02179381CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica e Astronomia and CSDCUniversità di FirenzeSesto FiorentinoItaly
  2. 2.INFN, sez. FirenzeSesto FiorentinoItaly
  3. 3.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations