Advertisement

Regional Control of Probabilistic Cellular Automata

  • Franco Bagnoli
  • Sara Dridi
  • Samira El Yacoubi
  • Raúl Rechtman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11115)

Abstract

Probabilistic Cellular Automata are extended stochastic systems, widely used for modelling phenomena in many disciplines. The possibility of controlling their behaviour is therefore an important topic. We shall present here an approach to the problem of controlling such systems by acting only on the boundary of a target region.

Keywords

Probabilistic cellular automata Control theory Boundary control Reachability 

Notes

Acknowledgment

R.S. acknowledges partial financial support from PPA-DGAPA-UNAM.

References

  1. 1.
    See for instance the series of proceedings of the ACRI (Cellular Automata for Research and Industry) conferences Cellular Automata (Lectures Notes in Computer Science, Springer): ACRI2002, LNCS 2493, DOI:  https://doi.org/10.1007/3-540-45830-1;ACRI2004, LNCS 3305,  https://doi.org/10.1007/b102055; ACRI2006, LNCS 4173,  https://doi.org/10.1007/11861201; ACRI2008, LNCS 5191,  https://doi.org/10.1007/978-3-540-79992-4; ACRI2010, LNCS 6350,  https://doi.org/10.1007/978-3-642-15979-4; ACRI2012, LNCS 7495,  https://doi.org/10.1007/978-3-642-33350-7; ACRI2014, LNCS 8751,  https://doi.org/10.1007/978-3-319-11520-7; ACRI2016, LNCS 9863,  https://doi.org/10.1007/978-3-319-44365-2
  2. 2.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437 (1969).  https://doi.org/10.1016/0022-5193(69)90015-0MathSciNetCrossRefGoogle Scholar
  3. 3.
    Damiani, C., Serra, R., Villani, M., Kauffman, S.A., Colacci, A.: Cell-cell interaction and diversity of emergent behaviours. IET Syst. Biol. 5, 137 (2011).  https://doi.org/10.1049/iet-syb.2010.0039CrossRefGoogle Scholar
  4. 4.
    Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis. Birkhäuser, Berlin (2005).  https://doi.org/10.1007/b138451CrossRefzbMATHGoogle Scholar
  5. 5.
    Ermentrout, G., Edelstein-Keshet, L.: Cellular automata approaches to biological modeling. J. Theor. Biol. 160, 97–133 (1993).  https://doi.org/10.1006/jtbi.1993.1007CrossRefGoogle Scholar
  6. 6.
    Boccara, N., Goles, E., Martínez, S., Picco, P. (eds.): Cellular Automata and Cooperative Systems. Nato Science Series C, vol. 396. Springer, Amsterdam (1983).  https://doi.org/10.1007/978-94-011-1691-6CrossRefGoogle Scholar
  7. 7.
    Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998).  https://doi.org/10.1007/978-1-4614-1800-9_27CrossRefzbMATHGoogle Scholar
  8. 8.
    Codd, E.F.: Cellular Automata. Academic Press, New York (1968). ISBN 0121788504zbMATHGoogle Scholar
  9. 9.
    Burks, A.W.: Essays on Cellular Automata. University of Illinois Press, Champaign (1970)zbMATHGoogle Scholar
  10. 10.
    Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 2. Academic Press, New York (1982). EAN 9781568811420zbMATHGoogle Scholar
  11. 11.
    Vichniac, G.: Simulating physics with cellular automata. Phys. D 10, 96–115 (1984).  https://doi.org/10.1016/0167-2789(84)90253-7MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wolfram, S.: Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601 (1983).  https://doi.org/10.1103/RevModPhys.55.601MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wolfram, S.: Universality and complexity in cellular automata. Physica 10D, 1 (1984).  https://doi.org/10.1016/0167-2789(84)90245-8MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kari, J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334, 3–33 (2005).  https://doi.org/10.1016/j.tcs.2004.11.021MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Domany, E., Kinzel, W.: Equivalence of cellular automata to Ising models and directed percolation. Phys. Rev. Lett. 53, 311–314 (1984).  https://doi.org/10.1103/PhysRevLett.53.311MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Louis, P.-Y., Nardi, F. (eds.): Probabilistic Cellular Automata, Emergence, Complexity and Computation, vol. 27. Springer, Basel (2018).  https://doi.org/10.1007/978-3-319-65558-1CrossRefGoogle Scholar
  17. 17.
    Zerrik, E., Boutoulout, A., El Jai, A.: Actuators and regional boundary controllability for parabolic systems. Int. J. Syst. Sci. 31, 73–82 (2000).  https://doi.org/10.1080/002077200291479CrossRefzbMATHGoogle Scholar
  18. 18.
    Lions, J.: Controlabilité exacte des systèmes distribueés. CRAS, Série I(302), 471–475 (1986)zbMATHGoogle Scholar
  19. 19.
    Lions, J.: Exact controllability for distributed systems. Some trends and some problems. In: Spigler, R. (ed.) Applied and Industrial Mathematics. MAIA, vol. 56, pp. 59–84. Springer, Dordrecht (1991).  https://doi.org/10.1007/978-94-009-1908-2_7CrossRefGoogle Scholar
  20. 20.
    Russell, D.: Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20, 639–739 (1978).  https://doi.org/10.1137/1020095MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    El Yacoubi, S., El Jai, A., Ammor, N.: Regional controllability with cellular automata models. In: Bandini, S., Chopard, B., Tomassini, M. (eds.) ACRI 2002. LNCS, vol. 2493, pp. 357–367. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45830-1_34CrossRefzbMATHGoogle Scholar
  22. 22.
    Fekih, A.B., El Jai, A.: Regional Analysis of a Class of Cellular Automata Models. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 48–57. Springer, Heidelberg (2006).  https://doi.org/10.1007/11861201_9CrossRefzbMATHGoogle Scholar
  23. 23.
    El Yacoubi, S.: Mathematical method for control problems on cellular automata models. Int. J. Syst. Sci. 39(5), 529–538 (2008).  https://doi.org/10.1080/00207720701847232MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Bagnoli, F., El Yacoubi, S., Rechtman, R.: Synchronization and control of cellular automata. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 188–197. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15979-4_21CrossRefzbMATHGoogle Scholar
  25. 25.
    Bagnoli, F., Rechtman, R., El Yacoubi, S.: Control of cellular automata. Phys. Rev. E 86, 066201 (2012).  https://doi.org/10.1103/PhysRevE.86.066201CrossRefzbMATHGoogle Scholar
  26. 26.
    Bagnoli, F., El Yacoubi, S., Rechtman, R.: Toward a boundary regional control problem for Boolean cellular automata. Nat. Comput. (2017).  https://doi.org/10.1007/s11047-017-9626-1
  27. 27.
    Bagnoli, F., El Yacoubi, S., Rechtman, R.: Control of cellular automata. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-642-27737-5_710-1CrossRefzbMATHGoogle Scholar
  28. 28.
    Bagnoli, F., Rechtman, R.: Regional synchronization of a probabilistic cellular automaton. In: Mauri, G., et al. (eds.) ACRI 2018, LNCS, vol. 11115. pp. 255–263. Springer, Heidelberg (2018)Google Scholar
  29. 29.
    Bagnoli, F.: Cellular automata in dynamical modelling in biotechnologies. In: Bagnoli, F., Lió, P., Ruffo, S. (eds.) p. 3. World Scientific, Singapore, (1998).  https://doi.org/10.1142/9789812813053_0001
  30. 30.
    Bagnoli, F., Boccara, B., Rechtman, R.: Nature of phase transitions in a probabilistic cellular automaton with two absorbing states. Phys. Rev. E 63, 046116 (2001).  https://doi.org/10.1103/PhysRevE.63.046116CrossRefGoogle Scholar
  31. 31.
    Vichniac, G.: Boolean derivatives on cellular automata. Physica 10D, 96 (1984).  https://doi.org/10.1016/0167-2789(90)90174-NMathSciNetCrossRefGoogle Scholar
  32. 32.
    Bagnoli, F.: Boolean derivatives and computation of cellular automata. Int. J. Mod. Phys. C. 3, 307 (1992).  https://doi.org/10.1142/S0129183192000257MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Bagnoli, F., Rechtman, R.: Synchronization and maximum Lyapunov exponents of cellular automata. Phys. Rev. E 59, R1307 (1999).  https://doi.org/10.1103/PhysRevE.59.R1307CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Franco Bagnoli
    • 1
    • 2
  • Sara Dridi
    • 3
  • Samira El Yacoubi
    • 3
  • Raúl Rechtman
    • 4
  1. 1.Department of Physics and Astronomy and CSDCUniversity of FlorenceSesto FiorentinoItaly
  2. 2.INFN, sez. FirenzeSesto FiorentinoItaly
  3. 3.Team Project IMAGES_ESPACE-Dev, UMR 228 Espace-Dev IRD UA UM UG UR, University of Perpignan Via DomitiaPerpignan CedexFrance
  4. 4.Instituto de Energías RenovablesUniversidad Nacional Autónoma de MéxicoTemixcoMexico

Personalised recommendations