Advertisement

Leakage-Resilient Chosen-Ciphertext Secure Functional Encryption from Garbled Circuits

  • Huige Wang
  • Kefei Chen
  • Joseph K. Liu
  • Ziyuan Hu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11125)

Abstract

At Asiacrypt 2013, Qin and Liu showed a leakage-resilient chosen-ciphertext attacks (LR-CCA) secure public-key encryption (PKE) from one-time lossy filter (OT-LF) and hash proof system (HPS), from which, combining garbled circuits (GC), we present an LR-CCA secure generic construction for single-key and single-ciphertext functional encryption (FE) via hash proof system (HPS) and one-time lossy filter (OT-LF). We bypass known obstacles in realizing leakage-resilient using garbled circuits that make a non-black-box use of the underlying cryptographic primitives. Efficient instantiations of DDH-based and DCR-based HPS and OT-LF indicate that our approach is practical in realizing LR-CCA secure FE scheme under the standard assumptions. Moreover, our constructions from the DDH and DCR assumptions result in the same leakage rate as Qin and Liu’s.

Keywords

Functional encryption Leakage-resilient chosen-ciphertext Garbled circuits 

Notes

Acknowledgements

The first author is supported by the National Natural Science Foundation of China (Grant Nos. NSFC61702007, NSFC61572318) and the National Key Research and Development Program of China (Grant No. 2017YFB0802000) and Other Foundations (Grant Nos. KJ2018A0533, ahnis20178002, KJ2017A519, 16ZB0140, LD14127X, ZRC2013380). The second author is supported by the National Key Research and Development Program of China (Grant No. 2017YFB0802000) and the National Natural Science Foundation of China (Grant Nos. NSFCU1705264, NSFC61133014, NSFC61472114).

References

  1. 1.
    Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_6CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: On the practical security of inner product functional encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_35CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Agrawal, S., Prabhakaran, M.: Cryptographic agents: towards a unified theory of computing on encrypted data. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 501–531. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_17CrossRefGoogle Scholar
  4. 4.
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00457-5_28CrossRefzbMATHGoogle Scholar
  5. 5.
    Alwen, J., et al.: On the relationship between functional encryption, obfuscation, and fully homomorphic encryption. In: IMA International Conference on Cryptography and Coding, pp. 65–84 (2013)CrossRefGoogle Scholar
  6. 6.
    Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_6CrossRefzbMATHGoogle Scholar
  7. 7.
    Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_32CrossRefzbMATHGoogle Scholar
  8. 8.
    Ananth, P., Sahai, A.: Functional encryption for turing machines. In: Cryptology ePrint Archive, Report 2015/776 (2015). http://eprint.iacr.org/2015/776Google Scholar
  9. 9.
    Barbosa, M., Farshim, P.: On the semantic security of functional encryption schemes. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 143–161. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_10CrossRefGoogle Scholar
  10. 10.
    Bellare, M., O’Neill, A.: Semantically-secure functional encryption: possibility results, impossibility results and the quest for a general definition. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS, vol. 8257, pp. 218–234. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02937-5_12CrossRefGoogle Scholar
  11. 11.
    Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_25CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: FOCS 2007, pp. 647–657 (2007)Google Scholar
  13. 13.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16CrossRefGoogle Scholar
  14. 14.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_29CrossRefGoogle Scholar
  15. 15.
    De Caro, A.D., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_29CrossRefGoogle Scholar
  16. 16.
    Chow, S.S.M., Dodis, Y., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-based encryption from simple assumptions. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, pp. 152–161 (2010)Google Scholar
  17. 17.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4CrossRefGoogle Scholar
  18. 18.
    Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_31CrossRefGoogle Scholar
  19. 19.
    Faonio, A., Venturi, D.: Efficient public-key cryptography with bounded leakage and tamper resilience. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 877–907. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_32CrossRefGoogle Scholar
  20. 20.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: Advance in FOCS 2013, pp. 40–49. IEEE (2013)Google Scholar
  21. 21.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_27CrossRefGoogle Scholar
  22. 22.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)Google Scholar
  23. 23.
    Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: STOC 2013, pp. 555–564 (2013)Google Scholar
  24. 24.
    Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Advance in STOC 2013, pp. 545–554 (2013)Google Scholar
  25. 25.
    Goyal, V., Jain, A., Koppula, V., Sahai, A.: Functional encryption for randomized functionalities. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 325–351. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_13CrossRefGoogle Scholar
  26. 26.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Advance in ACM CCS 2006, pp. 89–98 (2006)Google Scholar
  27. 27.
    Halderman, J.A., et al.: Lest we remember: cold boot attacks on encryption keys. In: van Oorschot, P.C. (ed.) USENIX Security Symposium, pp. 45–60. USENIX Association (2008)Google Scholar
  28. 28.
    Hofheinz, D.: Circular chosen-ciphertext security with compact ciphertexts. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 520–536. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_31CrossRefGoogle Scholar
  29. 29.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78967-3_9CrossRefGoogle Scholar
  30. 30.
    Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-42045-0_20CrossRefGoogle Scholar
  31. 31.
    Qin, B., Liu, S.: Leakage-flexible CCA-secure public-key encryption: simple construction and free of pairing. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 19–36. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_2CrossRefGoogle Scholar
  32. 32.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27CrossRefGoogle Scholar
  33. 33.
    Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20465-4_27CrossRefGoogle Scholar
  34. 34.
    Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_33CrossRefGoogle Scholar
  35. 35.
    Yao, A.C.: Protocols for secure computations. In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press (1982)Google Scholar
  36. 36.
    Zhang, M., Shi, W., Wang, C., Chen, Z., Mu, Y.: Leakage-resilient attribute-based encryption with fast decryption: models, analysis and constructions. In: Deng, R.H., Feng, T. (eds.) ISPEC 2013. LNCS, vol. 7863, pp. 75–90. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38033-4_6CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Huige Wang
    • 1
  • Kefei Chen
    • 2
    • 5
  • Joseph K. Liu
    • 3
  • Ziyuan Hu
    • 4
  1. 1.Department of ComputerAnhui Science and Technology UniversityFengyangChina
  2. 2.Department of MathematicsHangzhou Normal UniversityHangzhouChina
  3. 3.Faculty of Information TechnologyMonash UniversityMelbourneAustralia
  4. 4.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  5. 5.Westone Cryptologic Research CenterBeijingChina

Personalised recommendations